
ShadowSync: Latency Long Tail caused by Hidden
Synchronization in Real-time LSM-tree based Stream Processing

Systems
Shungeng Zhang∗
Augusta University

Augusta, USA
szhang2@augusta.edu

Qingyang Wang
Louisiana State University

Baton Rouge, USA
qwang26@lsu.edu

Yasuhiko Kanemasa
Fujitsu Limited
Kawasaki, Japan

kanemasa@fujitsu.com

Julius Michaelis
Fujitsu Limited
Kawasaki, Japan

michaelis@fujitsu.com

Jianshu Liu
Louisiana State University

Baton Rouge, USA
jliu96@lsu.edu

Calton Pu
Georgia Institute of Technology

Atlanta, USA
calton.pu@cc.gatech.edu

Abstract
Mission-critical, real-time, continuous stream processing applica-
tions that interact with the real world have stringent latency require-
ments. For example, e-commerce websites like Amazon improve
their marketing strategy by performing real-time advertising based
on customers’ behavior, and latency long tail can cause signi�-
cant revenue loss. Recent work [39] showed a positive correlation
between latency long tail and variance in the execution time of
synchronous invocation chains (critical paths) in microservices
benchmarks. This paper shows that asynchronous, very short but
intense resource demands (called millibottlenecks) outside of criti-
cal paths can also cause signi�cant latency long tail.

Using a tra�c analysis stream processing application bench-
mark, we evaluated the impact of asynchronous workload bursts
generated by a multi-layer data structure called LSM-tree (log-
structured merge-tree) for continuous checkpointing. Outside of
the critical path, LSM-tree relies on maintenance operations (e.g.,
�ushing/compaction during a checkpoint) to reorganize LSM-tree
in memory and on disk to keep data access latency short. Although
asynchronous, such recurrent maintenance operations can cause
frequent millibottlenecks, particularly when they overlap, a prob-
lem we call ShadowSync. For scheduling and statistical reasons,
signi�cant latency long tail can arise from ShadowSync caused
by asynchronous recurrent operations. Our experimental results
show that with typical settings of benchmark components such as
RocksDB, ShadowSync can prolong request message latency by up
to 2 seconds. We show e�ective mitigation methods can alleviate
both scheduled and statistical ShadowSync reducing the latency
long tail to less than 20% of the original at the 99.9C⌘ percentile.

CCS Concepts: • General and reference! Performance; Ex-
perimentation; • Computer systems organization ! Data
�ow architectures.
∗Also with Louisiana State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or
a fee. Request permissions from permissions@acm.org.
Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00
h�ps://doi.org/10.1145/3528535.3565251

Keywords: stream processing, synchronization, performance in-
stability

ACM Reference Format:
Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis,
Jianshu Liu, and Calton Pu. 2022. ShadowSync: Latency Long Tail caused
by Hidden Synchronization in Real-time LSM-tree based Stream Processing
Systems. In 23rd ACM/IFIP International Middleware Conference (Middleware
’22), November 7–11, 2022, Quebec, QC, Canada. ACM, New York, NY, USA,
14 pages. h�ps://doi.org/10.1145/3528535.3565251

1 Introduction
Mission-critical, real-time, continuous stream processing applica-
tions such as real-time advertising [33], real-time alarming [57],
and real-time object recognition [7] have stringent latency require-
ments, often dictated by real-world interactions [48, 58]. The ongo-
ing cross-industry event P99 Conf [43] especially focuses on the
tail latency due to its practical signi�cance in real-world applica-
tions. As a concrete scenario from the Amazon Go checkout-free
supermarket [47], as the customer walks through the store, all the
actions and purchase behaviors that compose the customer expe-
rience are captured in real-time as event streams, which are in
turn analyzed and acted upon using real-time stream processing to
provide customized advertisement and recommendation services.
Latency delays of such real-time applications at the magnitude
of seconds can cause serious customer dissatisfaction and lead to
signi�cant revenue loss [19].

Recent work [39] has studied the variance in the critical path
(synchronous invocation chain of composite microservices) corre-
lated to latency long tail. In contrast to, and complementing their
approach, we focus on latency long tail caused by asynchronous
services outside of the critical path. Although these asynchronous
services are running in parallel to the critical path, they can be-
come signi�cant sources of latency long tail problems through the
formation of millibottlenecks [38, 45, 50] caused by overlapping
asynchronous services, a phenomenon we call ShadowSync.

To demonstrate and evaluate the impact of millibottlenecks and
associated latency long tail created by asynchronous services, we
use a real-time tra�c jam ranking program [58] as a representative
example (Section 3). The program produces a stream of vehicle data,
with components such as Flink [13] for message processing and
RocksDB [9] for data management under continuous checkpointing
(a key feature to guarantee high fault tolerance and fast recovery).
To manage large state data and to support its incremental backup,

https://doi.org/10.1145/3528535.3565251
https://doi.org/10.1145/3528535.3565251

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

0
0.5

1
1.5

2
2.5

150 200 250 300 350P
er

ce
nt

ile
 la

te
nc

y
[s

]

Timeline [s]

Shadow Synchronization99.9th
95th

(a) Without our mitigation methods.

0
0.5

1
1.5

2
2.5

150 200 250 300 350P
er

ce
nt

ile
 la

te
nc

y
[s

]

Timeline [s]

99.9th
95th

(b) With our mitigation methods.

Figure 1.We found that ShadowSync signi�cantly contributes to
the latency long tail problem of large-scale event-stream processing
applications, even though the system is facing a constant external
workload and the overall system utilization is low to moderate.

RocksDB adopts LSM-tree (log-structured merge-tree), a multi-
layer data manager, with level 0 in memory, and less frequently
accessed data migrated to higher levels in a �le system. A �ush
operation copies data from memory (level 0) to disk (level 1), and
a compaction operation consolidates data scattered among higher
levels into a compact representation to reduce access latency. A
major design goal of the LSM-tree is to minimize the critical path of
memory data access, by o�oading non-critical data to disk through
�ushing, and reorganization through compaction.

Although the critical path is the �rst order of concern in real-time
stream processing systems, our study shows that asynchronous
services, even though o�oaded to the outside of the critical path,
are far more than second-order e�ects. For example, our analysis
shows for both scheduling and statistical reasons, the asynchro-
nous services (e.g., �ushing and compaction during continuous
checkpointing) often overlap in time, forming ShadowSync and
signi�cant latency long tail problems. Under typical checkpointing
con�gurations, Figure 1 shows the latency spikes generated by
the scheduling of �ushing (triggered every 8sec) and compaction
(triggered every 32sec). The ShadowSync (overlap) will occur at the
lowest common multiplier of any �xed triggering periods, even if
independently speci�ed. Our results create a non-negligible caveat
into the presumed scale-out capabilities of LSM-tree-based key-
value stores: latency long tail outside of the critical path. For ex-
ample, our experiments scale out to 128 stage instances, each of
them with periodic/recurrent asynchronous services prone to these
overlaps.

The main contribution of this paper is a detailed experimental
study of ShadowSync, con�rming millibottlenecks and latency long
tail in a real-time continuous stream processing benchmark. The
ShadowSync phenomena are due to overlapping transient asyn-
chronous operations from di�erent components in the system. Our
study covers CPU millibottlenecks from two kinds of ShadowSync:
(1) overlaps created by the scheduling of asynchronous services
at �xed periods (Section 3.2), and (2) statistical overlaps when the
number of concurrent instances reaches su�ciently high levels

L1~L5
L0

SSTable

memtable

...

flush

compaction

messags
Stage 0

In-memory
state

messages
Stage 1

L6

...

...

Figure 2. RocksDB implementation of LSM-tree.

(Section 3.3). Although the CPU millibottlenecks only last for a frac-
tion of a second, they prevent the processing of other components
for a su�ciently long time to create a latency long tail.

The experimental con�rmation of asynchronous services such
as ShadowSync as sources of latency long tail is a signi�cant dis-
covery. Up to now, it has been commonly assumed that o�oading
work from critical paths to asynchronous services would enable
increased performance through scaling out, which is the common
way implemented in the latest stream processing systems o�oad-
ing continuous checkpointing tasks to data stores like RocksDB.
Our study shows that simply shifting work from a critical path to
asynchronous services may improve throughput by scaling out, but
there is no free lunch: The new asynchronous services may create
new sources of latency long tail. Additional care must be taken to
remove or reduce ShadowSync caused by asynchronous services.

Our second contribution consists of e�ective mitigation meth-
ods to address the latency long tail issues caused by ShadowSync.
The mitigation methods are designed to signi�cantly alleviate the
hidden interference among the apparently independent asynchro-
nous services in two ways. First, to remove ShadowSync created by
scheduling, the �rst set of mitigation algorithms use appropriate
waiting to avoid overlapped execution of heavy-weight operations
such as �ushing and compaction. Second, to reduce statistical over-
laps created by many concurrent service executions, we control
carefully the amount of concurrency through the judicious allo-
cation of soft resources such as �ushing and compaction threads.
Our evaluation results show that these mitigation methods reduce
99.9C⌘ percentile latency to less than 20% of the original bench-
mark application and even reduce the 95C⌘ to less than 50% of the
original.

The rest of the paper is organized as follows. Section 2 shows a
periodic/recurrent latency long tail problem caused by ShadowSync.
Section 3 introduces two types of ShadowSync. Section 4 and 5
introduce and evaluate the proposed mitigation methods, respec-
tively. Section 6 discusses ShadowSync with di�erent sources or in
di�erent stream processing pipelines. Section 7 summarizes related
work, and Section 8 concludes the paper.

2 Real-world Exemplar of the ShadowSync
Problem

Both the throughput and latency of a message in real-time stream
processing systems are often limited by the critical path of that
message. As an example, recent work [39] showed a correlation
between the variance of critical path execution and latency long
tail. Quite often, e�orts are made to reduce the critical path to
improve request latency, through the specialization of common
cases and o�oading heavywork (e.g., I/O) to asynchronous services.
A good example is the Log-Structured Merge-Tree (LSM-tree) [31]

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

0
0.3
0.6
0.9
1.2
1.5

150 160 170 180 190 200 210 220ta
il

la
te

nc
y

[s
]

Timeline [s]

95th 99.9th

Figure 3. Illustrative latency spikes in timeline analysis.

implementation of key-value stores. The main requests are served
by data in memory via a fast critical path, and storage operations
involving disk I/O are shifted to asynchronous services.

Our benchmark adopts 1) RocksDB (Figure 2), a state-of-the-art
LSM-based key-value store widely-used by industry practitioners
like Facebook [6, 32], Uber [35], and Net�ix [4]. 2) Flink, a main-
stream messaging platform widely adopted by real-time stream
processing applications such as real-time analytics services (e.g.,
Amazon Kinesis Data Analytics [21, 44]) and real-time alarming
(e.g., eBay [11] and Capital One [12] monitoring platforms). In
RocksDB, the fast execution path uses in-memory data access to
reduce latency. Write operations append new data to an in-memory
log �le called memtable. Periodically, the �ushing operation moves
memtable content to �les called SSTables (Sorted Sequence Table).
To improve average access latency and throughput, SSTables are
organized hierarchically in levels. Periodically, the SSTables are
reorganized to re�ect the access patterns in an asynchronously
triggered operation called compaction, to remove duplicated data
items and deleted ones.

Both �ushing and compaction involve intense CPU overhead
and disk I/O operations over a short period of time (from a fraction
of a second to 1.5sec in our experiments). To improve performance
scalability, �ushing and compaction are designed to work inde-
pendently. However, as we will explain in more detail in the next
section, �ushing and compaction often overlap in their execution,
in a situation we call ShadowSync. During a ShadowSync, system
resources (e.g., CPU) are fully occupied in a phenomenon called
millibottleneck [50], leading to signi�cant queuing and sometimes
dropped message packets. As a result, ShadowSync often produces
latency long tail, even though they are asynchronous services and
outside of the critical path.

Figure 3 illustrates the ShadowSync phenomena during an ex-
periment (borrowed from Section 3). The X-axis shows the timeline
of the experiment, from 150sec to 220sec. It shows the latency of
messages grouped within windows of 50ms intervals. For most
intervals, the message end-to-end latency is between 0.2sec and
0.4sec, but there are three spikes (at 152sec, 184sec, and 216sec)
when the messages take more than 1sec to return. These spikes
correspond to ShadowSync, when periodic �ushing operations (at
16sec intervals) overlap with periodic compaction operations (at
32sec intervals). ShadowSync will be explained in detail in the next
section.

3 Experimental Study of ShadowSync
In this section, we describe the results from evaluations of a real-
time stream processing benchmark under continuous checkpoint-
ing. The experiments show two types of ShadowSync: scheduled and
statistical. Section 3.2 describes �ndings on scheduled ShadowSync,
when the scheduling of �ushing and compaction operations from
the same stage instances overlap, causing millibottlenecks and la-
tency long tail. Section 3.3 describes the statistical ShadowSync

among the �ushing and compaction operations from independent
instances across stages, which also causes latency long tail.

3.1 Experimental Environment
We use a real-world, real-time streaming platform “Dracena”, which
is a distributed event stream processing platform designed by Fu-
jitsu to collocate various IoT services [37, 58]. Dracena consists of a
combination of open-source utility software components, including
(1) Apache Flink [13] as a distributed stream message processing
engine, (2) RocksDB as a state management backend involving
checkpoint activities (�ush and compaction) in Flink worker nodes,
(3) Apache Kafka [16] as a persistent message queue for its in-
put/output, and (4) HDFS as reliable backup storage for RocksDB
data.

On top of Dracena, we run a real-time tra�c jam ranking bench-
mark application for connected cars on the roads in the Metropoli-
tan Tokyo area. Figure 4(a) depicts the pipeline of our multi-stage
streaming data�ow, including three types of objects: cars in s0,
streets in s1, and tra�c jam ranking in s2. Concretely, each car
object in stage s0 receives an event message every second from
a workload generator, where the message data is synthetic data
inspired by real car sensor data from our industry partner. The
message includes car-ID, speed, position coordinate, etc. After up-
dating, the car object sends its real-time state to a street object
(corresponding to a physical street) in stage s1 that the car is lo-
cated on at that moment. The street object will calculate the degree
of tra�c jam based on the number of cars on it. Then the street will
send the information to the tra�c jam ranking object in stage s2,
which aggregates and ranks the tra�c jam from all streets in the
city as the �nal output.

We conducted our experiments in the public CloudLab clus-
ter [36]. Figure 4(b) shows the deployment of our benchmark ap-
plication on Flink’s worker nodes and the �ow of data messages
among them. In our experiments, stage s0, s1, and s2 execute
with 64, 64, and 1 instance(s), respectively. We specify the num-
ber of cars (e.g., 10k cars) in the streets to control the intensity of
the workload. Figure 4(c) outlines the choices of the hardware spec-
i�cation in our experiments. The embedded RocksDB for the state
management of Flink is deployed in in-memory tmpfs to eliminate
the interference caused by disk I/O (e.g., write stalls [30]), and the
state �les managed by RocksDB will be asynchronously backed up
(after each checkpoint) to the remote HDFS for persistence purpose.
Such a hybrid con�guration (i.e., tmpfs plus HDFS) can achieve
both low tail latency and high scalability based on industry experi-
ence [58]. For comparison, we also show experimental results using
NVMe SSDs at the end of the evaluation (see Section 5.3).

RocksDB implements the �ushing operation as a straight dump
of a memtable bu�er to a single SSTable �le. The �ushing operation
is initiated automatically if the memtable �lls up, or it can be ini-
tiated through a checkpoint operation of Flink. As the number of
SSTable �les grows at each level, the compaction operation is sched-
uled automatically. By default, four SSTables trigger compaction at
L0 (i.e., level 0).

3.2 Scheduled ShadowSync Flushing and Compaction
within the Same Stage

We show our �rst case study of the ShadowSync problem, where the
scheduling of �ushing and compaction operations from the same
stage instances overlap during checkpoints in a stream processing

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

flushing, compaction,
and other transient

system factors (e.g., GC)

critical path
checkpoints

Vehicles
(msg source)

Kafka
(src)

Kafka
(sink)

s0 s1

data message

Flink workers cluster

(b) Benchmark cluster sample topology

Node c6220

CPU 2 x Xeon E5-2650v2 processors (8 cores
each, 2.6Ghz)

RAM 64GB Memory (8 x 8GB DDR-3 RDIMMs,
1.86Ghz)

Disks 2 x 1TB SATA 3.5" 7.2K rpm hard drives
1 x 256GB Toshiba M.2 PCIe NVMe SSD

NIC Intel X520 PCIe Dual port 10Gb Ethernet
NIC

(c) Hardware stack
(a) Data stream flow of benchmark application

s0 s1

s0 s1

s0 s1

s2

car object
state

street
object state

traffic jam
ranking

src s0 s1 s2 sink

async operations

HDFS

Figure 4. Details of the experimental setup.

Timeline

cnt: 4

flush

compaction

s1 s1

L0
SST

s1

L0
SST

L0
SST

s1 s1

flush

compaction

s0 s0 s0

L0
SST

L1 SST

s0 s0

L0
SST

1st
checkpoint

2nd
checkpoint

3rd
checkpoint

4th
checkpoint

5th
checkpoint

cnt: 1 cnt: 2 cnt: 3

cnt: 2

cnt: 4

cnt: 4cnt: 3 cnt: 1

L0
SST

L0
SST

cnt: 2

L1 SST
compaction

L1 SST

L0
SST

L0
SST L0

SST

Figure 5. Illustration of scheduled ShadowSync �ushing and com-
paction within the same stage over �ve continuous checkpoints.
The top shows an s0 instance while the bottom shows an s1 in-
stance. Compaction is triggered once the number of accumulated
L0 SSTables (the counter increases by 1 for every �ushing) reaches
4. The initial counter value may di�er in di�erent stages.

system, causing millibottlenecks and latency long tail. This study
is to answer two questions as raised in the motivation section:

• Q1: What is the main reason for �ushing and compaction
operations to overlap and form ShadowSync?

• Q2: What is the impact of ShadowSync on the latency long
tail of a stream processing application?

To answer the �rst question (Q1), we start our analysis by �gur-
ing out how and when the �ushing and compaction activities are
involved during checkpoints in a stream processing system. Con-
cretely, the checkpointing mechanism in Flink is coordinated and
pipelined for a consistent global state of the distributed streaming
data �ow [5]. As a state backend of Flink, RocksDB maintains the
runtime states (e.g., car and street objects) for all stages in mem-
ory (i.e., named memtable). At the beginning of each checkpoint,
each stage instance in Flink �ushes its corresponding memtables
in RocksDB into �lesystem (we use in-memory tmpfs in our exper-
iments to avoid disk I/O) as L0 SSTable �les. Once the accumulated
SSTable �les of a stage instance reach a preset compaction threshold
(default is 4 in RocksDB), the compaction activity will be triggered,
merging accumulated SSTables to the next level (from L0 to L6,
see Figure 2). Figure 5 illustrates that a compaction activity for
both a s0 and a s1 instance will be periodically triggered every 4
continuous �ushing activities. Since each stage typically has tens
to hundreds of stage instances for parallelism (64 for both s0 and

Table 1. Statistics of �ushing and compaction activities during the
same period in Figure 3.

Checkpoints
1st CP* 2nd CP 3rd CP 4th CP 5th CP
at 152sec at 168sec at 184sec at 200sec at 216sec

stage s0 s1 s0 s1 s0 s1 s0 s1 s0 s1
of �ush for the CP 64 64 64 64 64 64 64 64 64 64
avg �ush time [ms] 33 87 31 106 29 63 29 70 27 58

of compaction for each CP 0 64 0 0 64 0 0 0 0 64
avg compaction time [ms] \ 10 \ \ 392 \ \ \ \ 291
total compaction input size [MB] \ 590 \ \ 2029 \ \ \ \ 589

*CP = Checkpoint

s1 in our experiments 1), at every 4C⌘ checkpoint, the triggered
compaction activities from the same stage instances will overlap
with all the triggering �ushing activities, causing the ShadowSync
problem between �ushing and compaction.

Table 1 shows the statistics of �ushing and compaction activities
for both stage s0 and s1 over �ve checkpoints during the same period
(i.e., 150⇠220sec) as in Figure 3. This table shows that the �ushing
and compaction activities of all instances synchronize at the 1BC and
5C⌘ checkpoints for stage s1 while the 3A3 checkpoint for stage s0.
What’s interesting is that the three times of synchronization match
well in time with the three latency spikes (at 152sec, 184sec, and
216sec) as shown in Figure 3, suggesting the causal relationship.

To con�rm the above causal relationship and also answer Q2,
Figure 6 shows the point-in-time analysis of Flink worker node CPU
utilization, message queue along with �ushing and compaction
concurrency during the same period as in Figure 3. This �gure
illustrates that the synchronization at 152sec, 184sec, and 216sec
between �ushing and compaction activities (see Figure 6(c) and 6(d))
cause the CPU utilization of the Flink worker nodes to be 100%
as shown in Figure 6(a), resulting in high message queues in all
stages during the same periods as shown in Figure 6(b). Thus, the
high message queues cause the three latency spikes as shown in
Figure 3.

There still is one mystery in Figure 6: While the starting times
of �ushing and compaction concurrency spikes (e.g., at 184sec)
in ShadowSync are almost the same, the concurrency spikes last
much longer than the �ushing spikes. This is an important discov-
ery because each concurrency spike has the same duration of the
CPU saturation of the Flink worker nodes, suggesting a signi�cant
performance impact.

To �gure this out, we further zoom in the period 183⇠186sec (i.e.,
the 3A3 checkpoint), shown in Figure 7, in which we show the start

164 corresponds to the total number of CPU cores in our 4 Flink nodes.

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

0
20
40
60
80

100

150 160 170 180 190 200 210 220

(a
)

fli
nk

 a
ve

ra
ge

cp

u
[%

]

Timeline [s]

0K

1K

2K

3K

150 160 170 180 190 200 210 220

Timeline [s]

overall source stage0 stage1

(b
)

of

 q
ue

ue
d

 m
es

sg
es

0
20
40
60
80

100

150 160 170 180 190 200 210 220

(c
)

ov
er

al
l f

lu
sh

co
nc

ur
re

nc
y

[#
]

Timeline [s]

stage0 stage1

0
5

10
15
20
25

150 160 170 180 190 200 210 220

(d
)

ov
er

al
l c

om
pa

ct
co

nc
ur

re
nc

y
[#

]

Timeline [s]

stage0 stage1

Figure 6. ShadowSync of �ushing and compaction activities in
RocksDB during the same period in Figure 3, leading to large latency
spikes (e.g., period 151⇠153sec, 184⇠186sec, and 217⇠220sec).

and end timestamps of each �ush and compaction activity (we have
64 instances for both s0 and s1) in one checkpoint. Each thin line
segment in Figure 7(c) and 7(d) shows the start, the end, and the
duration of either a �ushing or compaction activity from a speci�c
instance. Figure 7(d) clearly shows that the 64 compaction activi-
ties for s0 instances upon the current checkpoint last much longer
than their corresponding �ush activities (totally 128 for both s0 and
s1) in Figure 7(c). This is because �ush activities in RocksDB are
“stop-the-world” (thus not contend for CPU resources with other
threads) and all happen in memory, they �nish fast. On the contrary,
the limited number of compaction threads in RocksDB (totally 16
by default) need to process a large amount of CPU-intensive com-
paction activities (totally 64) while contending for CPU resources
with other Flink worker threads, leading to prolonged CPU satu-
ration as shown in Figure 6(a). This discovery also suggests that
a smart �ush/compaction threads allocation strategy is needed to
resolve/mitigate the ShadowSync problem, which we will discuss
more in Section 4.2.2.

3.3 Statistical ShadowSync �ushing and compaction across
Stages

The second case of ShadowSync involves �ushing and compaction
activities across di�erent Flink stages, which we call Statistical
ShadowSync. In the previous section, we show that the bursts
of compaction activities from s0 and s1 occur at di�erent check-
points during a 4-checkpoint cycle (see Figure 6(d)). However, our
experiments show that the periodic ShadowSync of �ushing and
compaction activities across di�erent stages can also occur given a
slightly di�erent system initial condition (e.g., checkpoint interval

0
20
40
60
80

100

183 183.5 184 184.5 185 185.5 186

Timeline [s]

(a
)

fli
nk

 a
ve

ra
ge

cp

u
[%

]

0K

1K

2K

3K

183 183.5 184 184.5 185 185.5 186

Timeline [s]

overall source stage0 stage1

(b
)

of

 q
ue

ue
d

 m
es

sa
ge

s

0
0.1
0.2
0.3
0.4
0.5

183 183.5 184 184.5 185 185.5 186

(c
)

flu
sh

 e
nd

-
to

-e
nd

 ti
m

e
[s

]

Timeline [s]

stage0 stage1

0
0.2
0.4
0.6
0.8

1

183 183.5 184 184.5 185 185.5 186

(d
)

co
m

pa
ct

io
n

en
d-

to
-e

nd
 ti

m
e

[s
]

Timeline [s]

stage0 stage1

Figure 7. Zoom in analysis of ShadowSync of �ushing and com-
paction activities in RocksDB during the period 183⇠186sec in
Figure 6(c) and 6(d). Each thin line segment in (c)(d) means the start,
the end, and the duration of either a �ushing or compaction activity
from a speci�c stage instance, and the longer of each line segment
the higher its position in (c)(d).

changes), leading to more severe CPU contention among �ushing
and compaction activities and thus higher latency spikes.

We show similar experimental results as in the previous section
during a 2-min runtime in Figure 8, with only one change: the Flink
checkpoint interval is reduced from 16sec to 8sec for faster failure
recovery. Our results show even higher latency spikes upon the
occurrences of ShadowSync, with a 4-checkpoint cycle in Figure 8(a)
(e.g., three small latency spikes and one large latency spike in a 32-
second cycle). Unlike the latency cycle in Section 3.2, where bursts
of compaction activities for s0 and s1 stage instances are separated
into di�erent checkpoints (see Figure 6(d)), majority of compaction
activities in this new experiment overlap in the same checkpoint
period in a cycle as shown in Figure 8(d) (at 254sec, 286sec, 318sec,
350sec). Such an overlap leads to a more severe CPU contention
among �ushing and compaction activities across di�erent stages,
leading to even higher latency spikes (e.g., over 2sec) than those in
Figure 3.

The reason of overlap of compaction activities across di�erent
stages (s0 and s1) is illustrated in Figure 9. Recall from Section 3.2,
compaction activities for all stage instances in Flink occur when
the counter for their corresponding L0 SSTables reaches a threshold
(by default 4). In this case, the counting of SSTables from di�erent
stage instances may synchronize in time if the initial counter values
for all stage instances are the same and every stage instance keeps
the same pace to increase and reset its counter value. This is the
case in Figure 9, where the instances of both stage s0 and s1 (64
for each stage) start with the same initial L0 SSTables counter
value and follow the same cycle (from 1 to 4), resulting in the

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

0
0.5

1
1.5

2

230 240 250 260 270 280 290 300 310 320 330 340 350

(a
)

ta
il

la
te

nc
y [

s]

Timeline [s]

95th 99.9th

0

5

10

230 240 250 260 270 280 290 300 310 320 330 340 350

(b
)

ch
ec

kp
oi

nt

tim
e

[s
]

Timeline [s]

0
20
40
60
80

100

230 240 250 260 270 280 290 300 310 320 330 340 350

(c
)

ov
er

al
l f

lu
sh

co
nc

ur
re

nc
y

[#
]

Timeline [s]

stage0 stage1

0
5

10
15
20
25

230 240 250 260 270 280 290 300 310 320 330 340 350

(d
)

ov
er

al
l c

om
pa

ct
co

nc
ur

re
nc

y
[#

]

Timeline [s]

stage0 stage1

Figure 8. The synchronization of bursts caused by compaction activities from di�erent stages leads to high latency spikes.

Timeline

cnt: 1

flush
s0

compaction

L0
SST

s0

L0
SST

s0

L1 SST

L0
SST

L0
SST

s0 s0

L0
SST

flush

compaction

s1 s1

L0
SST

L0
SST

s1

L0
SST

s1 s1

L0
SST

1st
checkpoint

2nd
checkpoint

3rd
checkpoint

4th
checkpoint

5th
checkpoint

cnt: 2 cnt: 4 cnt: 1cnt: 3

s0

s1

8th
checkpoint

L1 SST

cnt: 2

L0
SST

cnt: 4 cnt: 1cnt: 1 cnt: 3

L0
SST

cnt: 4
L0

SST

cnt: 4
compaction

L1 SST

compaction
L1 SST

...

Figure 9. Illustration of statistical ShadowSync �ushing and com-
paction across stages over �ve continuous checkpoints. The top
shows an s0 instance and the bottom shows an s1 instance. Com-
paction activities for both an s0 and s1 instance could sync in time
due to the same initial L0 SSTables counter value and the same
cycle (from 1 to 4) of such two instances, causing the ShadowSync
problem and even greater latency long tail in Figure 8(a).

synchronization of compaction activities from these two stages.
This explains the signi�cant overlap of the compaction activities
from both stage s0 and s1 at every 4th checkpoint in a 4-checkpoint
cycle as shown in Figure 8(d). When all compaction activities from
these stage instances are overlapped, the worst synchronization
situation happens, leading to a severe CPU contention problem and
high tail latency spikes (see Figure 8(a)).

We note that the initial L0 SSTable counter value for di�erent
stage instances could change when system settings or workload
conditions change, making the overlap of compaction activities
across di�erent stage instances di�cult to predict. This is because
�ushing in Flink can occur in two ways: 1) �ushing upon a check-
point (the typical way), and 2) �ushing when the memtable of a
stage instance becomes full. The second way of �ushing often oc-
curs during the initialization period of our benchmark application,

3rd
checkpoint

(a)

ShadowSync
Problem

En
d-

to
-e

nd

tim
e

Timeline

En
d-

to
-e

nd

tim
e

2. Add appropriate delay to
break sync between flushing
and compaction

Timeline

(b)

1. Evenly distribute compactions
in a cycle to break sync between
compactions

2nd
checkpoint

1st
checkpoint

4th
checkpoint

Flushing Compaction

Our solution breaks ShadowSync by two techniques:

Figure 10.Main idea of mitigationmethods to mitigate ShadowSync
by delaying and rearranging compaction activities across check-
points in one cycle.

in which all the objects in di�erent stage instances are initialized
before the runtime experiment starts. During this initialization
period, di�erent stage instances (s0 and s1 in our case) may expe-
rience di�erent frequencies of �ushing due to their high update
ratio and varied object size, thus the counter values of L0 SSTable
across di�erent stage instances can be di�erent after the initializa-
tion stage. For example, Figure 8(d) shows occasional compaction
activities from both stage s0 and s1 in the �rst 3 checkpoints in
the 4-checkpoint cycle; the case study of Section 3.2 even shows
completely out-of-sync compaction activities from stage s0 and s1
(see Figure 6(d)).

4 Mitigation Methods
So far we have studied two types of the ShadowSync problem of
LSM-based checkpointing in real-time stream processing appli-
cations: 1) the scheduled ShadowSync �ushing and compaction
within the same stage instances (Sections 3.2), 2) the statistical Shad-
owSync �ushing and compaction across di�erent stage instances
(Section 3.3). In this section, we introduce e�ective methods to
mitigate the latency long tail problem caused by ShadowSync. Our
mitigation methods follow two basic principles:

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

flushing
starts

M
sg

 q
ue

ue

Timeline

flushing
ends

msg queue
drains out

proper delay
(lower bound)

Figure 11. Estimation of appropriate delay between �ushing and
compaction activities based on the drain-out of message queue
triggered by �ushing.

1. Desynchronize scheduled/statistical overlap of �ushing and
compaction activities as much as possible;

2. Reduce the overlap probability by reducing the duration of
each �ushing and compaction activity.

Concretely, the �rst principle can be met by adding randomiza-
tion to the triggering condition of compaction (Section 4.1). Our
choice of a randomized algorithm in contrast to deterministic solu-
tions (e.g., priority-based scheduling) is based on the global nature
of checkpointing. A checkpoint command initiates hundreds (or
more) of stage instances, which may have similar checkpoint behav-
ior and cause resource consumption overlap. While deterministic
solutions typically would rely on assumptions (e.g., guaranteed mis-
matched run-time allocations), a randomized algorithm can always
achieve the goal of avoiding coincidences. The second principle can
be met by choosing the appropriate thread pool size for �ushing
and compaction accordingly (Section 4.2).

4.1 Scheduled Desynchronization by Randomizing
Intervals between Flushing and Compaction

The fundamental reason for ShadowSync is that hundreds of stage
instances along the streaming data�ow follow the same procedure
to do �ushing and compaction. As a result, the ShadowSync of
�ushing and compaction will likely occur under two conditions:
(1) the initial condition (e.g., the initial number of SSTable �les)
of a large number of stage instances is the same; (2) the periodic
checkpointing command from the Flink Master triggers the imme-
diate �ushing of all stage instances 2. The �rst condition enables
the SSTable counter of each stage instance to sync in time, thus a
large number of compaction activities could happen simultaneously
(overlap). The second condition will make sure that the simulta-
neous compaction activities overlap with hundreds of triggering
�ushing activities. Unfortunately, both conditions are likely to be
held in real systems. Figure 10(a) illustrates the ShadowSync when
both conditions are met, making it a serious performance problem
for real-time stream processing.

We apply two techniques to address the two pre-conditions of
ShadowSync, respectively, shown in Figure 10(b): �rst, to avoid the
compaction activities from a large number of stage instances being
triggered by �ushing at the same time, we randomize the default
triggering threshold (i.e., four SSTables) for each stage instance
to trigger compaction. As a result, the originally scheduled com-
paction activities at one checkpoint will spread across multiple

2Due to the high checkpoint frequency during runtime, �ushing caused by memtables
of a stage instance becoming full rarely occurs between consecutive checkpoints.

0

0.2

0.4

0.6

50 75 90 95 99 99.9 99.99

La
te

nc
y

[s
ec

]

Percentile [%]

baseline
delay500ms

delay1000ms

delay3000ms
delay8000ms

Figure 12. Impact of the delay between �ushing and compaction
activities on end-to-end tail latency. The delay 1000ms/3000ms
achieves the lowest latency.

checkpoints, depending on the range of the assigned random num-
ber. To best mitigate the ShadowSync problem, we should evenly
spread all compaction activities through all checkpoints as shown
in Figure 10(b). Since by default every 4 checkpoints form a cycle
(see Figure 8), we add an extra random integer U 2 [0, 4) on top
of the original cycle, where U obeys a uniform distribution. In this
case, the new compaction threshold will be 4 + U , thus compaction
activities of all stage instances are likely to be evenly distributed
across the checkpoints during runtime.

Second, to avoid/mitigate overlap involving both �ushing and
compaction (Section 3.2), we are inspired by [41] and insert an
appropriate delay between each cluster of �ushing and compaction
activities upon a checkpoint 3. We note that �ushing impacts the
tail latency performance of the target system by stopping mes-
sage processing in Flink due to its “stop-the-world” feature, which
causes messages to queue. Figure 11 illustrates the message queue
building up and draining out along with the �ushing activities upon
a checkpoint. Assume the system receives an input message rate _
and the duration for �ushing activities is �C (the message queue
building-up time). We can calculate the queued messages & in the
system during �ushing activities as:

& = _ ⇥ �C (1)
Once �ushing activities are done, the system can process all queued
messages to its full capability, thus the queued messages in the sys-
tem will start to drain. The queue drain period can be approximated
as follows:

) =
&

⇠
=
_ ⇥ �C

⇠
(2)

where ⇠ is the full processing capability of the system. To avoid
the deterioration of queued messages in the system due to the
compound queuing e�ect caused by the overlap of �ushing and
compaction activities, we should postpone the compaction activities
for an appropriate delay) until all queued messages (caused by
�ushing) are drained out. In our experiments, we are able to monitor
the input message rate _, the duration for each cluster of �ushing
activities �C , and the message processing capability⇠ of the system,
and calculate a reasonable delay time) , which is between 800ms
to 1sec in our experiments.

Figure 12 shows the end-to-end system latency as we increase
the delay of compaction in RocksDB from 100ms to 8000ms (detailed
experimental setup in Section 5.1). We note the calculated drain-out
time) is between 800ms to 1sec. The �gure shows that the system
achieves the best tail latency performance when the delay is set
to 1000ms, and tail latency performance almost keeps the same
3 [41] focuses single RocksDB instance study while our research targets the interaction
between hundreds of RocksDB instances and Flink.

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

0

0.2

0.4

0.6

0.8

1

50 75 90 95 99 99.9 99.99

La
te

nc
y

[s
ec

]

Percentile [%]

ush-1
ush-4
ush-16 (default)
ush-32
ush-64

Figure 13. Impact of number �ush threads on the intensity of
internal bursts. The best �ush threads allocation (16) matches the
number of CPU cores per Flink worker node.

when the delay increases to 3000ms. This is because too short a
delay (e.g., <1000ms) is not enough for the message queue to be
drained out before compaction activities (see Figure 11). On the
other hand, too long a delay (e.g., 8000ms) will cause the �ushing
of the current checkpoint overlaps with the compaction from the
previous checkpoint since the checkpoint interval is 8sec in our
experiments, still causing ShadowSync.

4.2 Statistical Desynchronization through Appropriate
Soft Resource Allocations

In this section, we show that appropriate soft resource allocations
can mitigate the statistical ShadowSync of �ushing and compaction
activities across di�erent stage instances. Through extensive ex-
periments, we show that the system tail latency is sensitive to the
allocation of �ushing and compaction threads. While soft resource
allocation does not address the ShadowSync of �ushing and com-
paction directly, an appropriate allocation can reduce the length of
each �ushing and compaction activity, thus reducing the probabil-
ity of ShadowSync of a large amount of �ushing and compaction
activities upon a checkpoint.

4.2.1 Choosing Appropriate Number of Flushing Threads.
We note �ushing in RocksDB will lock the in-memory state
(memtable) of each stage instance and prevent further state update
operations, blocking the normal message processing in the critical
path of the streaming data�ow in Flink. A “rule-of-thumb” approach
for the �ushing thread pool allocation is to set its size the same
as the underlying CPU cores. For example, we should con�gure
16 �ushing threads on each Flink worker node, which has two
Octa-core processors (Figure 4(c)). In this case, �ushing could fully
utilize the underlying CPU cores to decrease the overall �ushing
time upon each checkpoint while avoiding unnecessary locking
overhead introduced by over-allocation �ushing thread [52].

We validate our “rule-of-thumb” approach for �ushing thread
pool allocation in Figure 13. In this evaluation, we gradually in-
crease the number of �ushing threads in RocksDB from 1 to 64.
The �gure shows that the �ush-16 case indeed achieves the best
tail latency performance, suggesting the reduced impact of �ushing
activities on system performance; either under- or over-allocation
leads to deteriorated tail latency. In the following experiments, we
will set the number of �ushing threads to 16 in RocksDB.

4.2.2 ChoosingAppropriateNumber ofCompactionThreads.
Unlike the “stop-the-world” �ushing in RocksDB, compaction is
inherently an asynchronous process and will not block message
processing in Flink. Even though compaction activities in RocksDB

0

0.4

0.8

1.2

1.6

2

50 75 90 95 99 99.9 99.99

La
te

nc
y

[s
ec

]

Percentile [%]

compaction-1 (default)
compaction-2
compaction-4
compaction-8
compaction-12
compaction-16

Figure 14. Impact of number compaction threads on the intensity
of internal bursts. The best compaction threads allocation is 4 in
our environment.

Compaction concurrency per Flink worker node [#]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of fine-grained
<tail-latency,
concurrency>

pairs
58 184 472 530 503 451 355 346 243 148 70 52 41 18 16 13

Figure 15. Our approach �nds appropriate compaction thread pool
allocation (Knee Point) through a �ne-grained statistical analysis
(i.e., Kneedle [42]) between the system tail latency and the real-time
compaction threads concurrency.

occur outside the critical path of the message processing, they
could contend for the shared CPU resources [2] with message
processing threads in Flink.

Figure 14 shows the impact of di�erent sizes of compaction
thread pool on the system tail latency performance. In this set
of experiments, we gradually increase the compaction threads in
RocksDB from 1 to 16 (the tail latency for compaction-1 reaches
several minutes, thus we omit the results here). The �gure shows
that the system achieves the best tail latency performance when the
number of compaction threads is 4. This is because a too-large allo-
cation brings a severe CPU contention problem while a too-small
allocation will prolong the compaction process due to insu�cient
parallelism to do the compaction job for tens to hundreds of stage
instances.

Unlike the allocation of �ushing threads, the appropriate allo-
cation of compaction threads is non-trivial since the brute-force
approach by manually trying all possible allocations is time-
consuming. To fast infer an appropriate compaction threads al-
location, we adopt a �ne-grained statistic analysis inspired by
Kneedle [42], which enables us to infer a reasonable allocation
during system runtime. Speci�cally, we measure the �ne-grained
system tail latency and real-time compaction threads concurrency
over continuous 50ms time windows and plot the correlation be-
tween these two metrics as shown in Figure 15. Since the real-time
compaction threads concurrency changes fast over di�erent 50ms
time windows, we can quickly plot the correlation of the system
tail latency with a wide range of compaction threads concurrency
(e.g., from 1 to 16 in Figure 15). We then �nd the knee point of the
correlation curve through Kneedle to get the optimal concurrency

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

setting. For example, Figure 15 shows that the knee point of the
curve is when the concurrency of compaction threads is 4, and
any concurrency beyond 4 will result in increased system tail
latency. Thus, we recommend 4 as an appropriate compaction
threads allocation per Flink worker node. Such a recommendation
through our �ne-grained statistic analysis also matches with the
recommendation derived from our previous brute-force approach
shown in Figure 14.

5 Experimental Evaluation
In this section, we show a more detailed evaluation of the e�ective-
ness of our proposed mitigation methods using two representative
streaming benchmark applications: real-time tra�c jam ranking in
Flink [13] and real-time word count in Kafka Streams [16].

5.1 Case 1: Real-time Tra�c Jam Ranking in Flink
In this case study, we conduct experimental evaluations on a real-
time tra�c jam ranking application in Flink to verify that our
mitigation methods can e�ectively alleviate ShadowSync problems
and reduce the latency long tail.

The real-time tra�c jam ranking application (see Figure 4) is for
connected cars running on the roads in the Tokyo metropolitan
area. Our trace-based workload generator reads the real-world
tra�c data [58] and sends event messages to the backend stream
processing system every second. Each event message contains the
location information and basic sensor data (e.g., car-ID and speed)
of the corresponding physical car, and the event message size is
about 6kB on average. In our experiments, the message rate in all
cases keeps 60K messages/second, under which the Flink worker
node CPU usage is about 75%. More detailed experimental setup is
in Section 3.1.

Figure 16 shows the performance comparison between the origi-
nal benchmark application and the same application but with our
proposed mitigation methods in Section 4 applied. The delay of
compaction activities (triggered by �ushing) in RocksDB is set to
1sec as an appropriate setting (see Figure 12). Both cases use the
default �ushing and compaction threads allocation (16 for each) in
RocksDB.

Comparing the baseline case in Figure 16(a) with our solution
in Figure 16(b), our proposed mitigation methods can e�ectively
reduce large latency spikes. For example, the 99.9C⌘ percentile la-
tency could reach over 2sec at 209sec in Figure 16(a), which is
caused by the overlap between highly concurrent �ushing and
compaction activities shown in Figure 16(c) and 16(e), respectively.
After applying the desynchronization techniques between �ush-
ing and compaction, all of the 99.9C⌘ percentile latency spikes are
below 0.5sec as shown in Figure 16(b). This is because the 1sec
delay between �ushing and compaction in RocksDB e�ectively
decreases the frequency of the ShadowSync between highly concur-
rent �ushing and compaction activities as shown in Figure 16(d)
and 16(f). Figure 16(f) further shows the compaction activities from
both stage s0 and s1 are evenly distributed across the four consecu-
tive checkpoints, further reducing ShadowSync among compaction
activities within the same stage or across di�erent stages.

5.2 Case 2: Word Count in Kafka Streams
We present evaluation results of a real-timeWord Count application
in Kafka Streams [16], which has been widely used in previous

research [10, 24, 25]. In this set of experiments, each partition of
Kafka producer reads a line from a synthetic workload generator
(generating a set of random works about 25K per second) as a
sentence and emits it, and each partition of Kafka consumer �rst
splits the sentences into words that are then forwarded to the
group() function to subsequently count the occurrences of each
word. This is a stateful streaming application as counters need to
maintain the current count for each word as their internal state. We
note that Kafka Streams by default uses RocksDB to maintain the
local state on a computing node. We run theWordCount application
on a single dedicated node which is equipped with two Octa-core
processors (see Figure 4(c)), and set the partition for sentence events
(parallelism) to 64 to fully utilize the underlying CPU cores. In our
evaluation experiments, the Kafka node average CPU usage is 70%.

Figure 17 shows the tail latency performance comparison be-
tween the original word count benchmark application and the one
with our mitigation methods applied. The delay of compaction ac-
tivities (triggered by �ushing) in RocksDB is set to 1sec based on our
measurement. Both cases use the default �ushing and compaction
threads allocation (16 for each) in RocksDB for a fair comparison.

Our evaluation results show that our proposed desynchroniza-
tion techniques can e�ectively mitigate the latency long tail prob-
lem caused by ShadowSync. For example, the 99.9C⌘ percentile
latency for solution is about 0.7sec, which is signi�cantly better
than that in the cases of baseline (i.e., 1.3sec), indicating the e�ec-
tiveness of our proposed methods for mitigating latency long tail
problem. Figure 18 further show �ne-grained (e.g., 50ms granular-
ity) timeline analysis of metrics across di�erent system components
for a more detailed comparison. For example, the 99.9C⌘ percentile
latency in the baseline case in Figure 18(a) could reach 3sec, which
is due to the overlap between highly concurrent �ushing and com-
paction activities shown in Figure 18(c) 18(e). On the other hand,
all the 99.9C⌘ percentile latency in our solution case in Figure 18(b)
is below 2sec, the improvement of which is due to the desynchro-
nization among concurrent �ushing and compaction activities as
shown in Figure 18(d) 18(f).

5.3 Evaluation with NVMe SSDs
In this section, we deploy Flink and Kafka Streams benchmark
applications on the nodes that equip NVMe SSDs to contain SSTable
�les of RocksDB instead of using in-memory tmpfs. We repeat the
same experiments as in Section 5.1 and 5.2 and the results show that
our mitigation methods are still e�ective in reducing the latency
long tail problem caused by ShadowSync.
Results of Real-time Tra�c JamRanking in Flink.We validate
the e�ectiveness of our proposed mitigation methods in the Flink
benchmark application using NVMe SSDs in Figure 19. This �gure
shows the tail latency performance comparison of the real-time traf-
�c jam monitoring application in Flink with/without our mitigation
methods in NVMe SSDs. For example, Figure 19(a) shows that our
system faces the Statistical ShadowSync problem (see Section 3.3)
across di�erent Flink stages. Compared to our experimental re-
sults in Figure 8(a), we note that the tail latency performance of
Flink in NVMe SSDs is worse than that in the case of in-memory
tmpfs. For example, the 99.9C⌘ percentile latency of Flink in NVMe
SSDs is up to 2.3sec in Figure 19(a), while it is less than 2sec in
the case of in-memory tmpfs (see Figure 16(a))). This is due to
the inevitable heavy disk I/O operations caused by the �ushing
activities, leading to non-negligible overhead and latency spikes

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

0
0.5

1
1.5

2
2.5

3

200 205 210 215 220 225 230

(a
)

ta
il

la
te

nc
y

[s
]

Timeline [s]

95th 99.9th

0
0.5

1
1.5

2
2.5

3

120 125 130 135 140 145 150
Timeline [s]

95th 99.9th

(b
)

ta
il

la
te

nc
y

[s
]

0
0.1
0.2
0.3
0.4
0.5

200 205 210 215 220 225 230

(c
)

flu
sh

en
d-

to
-e

nd
 ti

m
e

[s
]

Timeline [s]

stage0 stage1

0
0.1
0.2
0.3
0.4
0.5

120 125 130 135 140 145 150

(d
)

flu
sh

en
d-

to
-e

nd
 ti

m
e

[s
]

Timeline [s]

stage0 stage1

0
0.5

1
1.5

2
2.5

200 205 210 215 220 225 230

(e
)

co
m

pa
ct

io
n

en
d-

to
-e

nd
 ti

m
e

[s
]

Timeline [s]

stage0 stage1

0
0.5

1
1.5

2
2.5

120 125 130 135 140 145 150

(f)
co

m
pa

ct
io

n
en

d-
to

-e
nd

 ti
m

e
[s

]

Timeline [s]

stage0 stage1

Figure 16. Our proposed mitigation methods can e�ectively reduce the overlap between concurrent �ushing and compaction activities
across di�erent stage instances. Figure (a)(c)(e) show the performance metrics of our original benchmark application, while (b)(d)(f) show
the corresponding metrics after our proposed mitigation methods with a 1sec delay are applied. We note that in (e)(f), the total number of
compaction activities during these four checkpoints are the same, but (f) shows the compaction activities are evenly spread across these four
checkpoints, while (e) shows more skewed compaction activities.

0

0.4

0.8

1.2

1.6

2

50 75 90 95 99 99.9 99.99

La
te

nc
y

[s
ec

]

Percentile [%]

baseline
solution

Figure 17. Tail latency comparisons between the original Word
Count application in Kafka Streams with our proposed mitigation
methods.

(detailed results are omitted due to space limitations). Figure 19(b)
shows that our proposed mitigation methods can e�ectively reduce
the latency long tail caused by the Statistical ShadowSync prob-
lem among highly concurrent �ushing and compaction activities
across di�erent stages, suggesting the e�ectiveness of our proposed
mitigation methods in alleviating the ShadowSync problem when
running on top of SSDs.
Results of Real-time Word Count in Kafka Streams. Figure 20
shows the �ne-grain performance comparison between the Word-
Count benchmark application without/with mitigation methods.
Comparing the performance in Figure 20(a) with the baseline in
Figure 18(a), the tail latency performance for Kafka Streams in
NVMe SSDs is worse than that in the case of in-memory tmpfs,
which is due to the inevitable heavy disk I/O operations caused
by the �ushing activities. Our experimental results in Figure 20(b)
are consistent with our observations in the previous WordCount
experiments using in-memory tmpfs, suggesting that our proposed
mitigation methods also work well in alleviating the ShadowSync
problem when running on top of SSDs.

6 Discussion
ShadowSync in di�erent stream processing pipelines. While
ShadowSync is mainly evaluated in our Flink and RocksDB (due to
their high popularity) stream processing pipeline, it should also ex-
ist in other pipelines such as Storm [46], Spark [15], and Samza [14],
which can also con�gure KV data stores as their backends to sup-
port continuous checkpointing for high fault-tolerance and fast
recovery (e.g., other KV stores like Cassandra [17] that support
incremental checkpointing). This is because modern stream pro-
cessing pipelines typically involve hundreds or even thousands of
processing units (or tasks) that share a limited number of physical
machines with �xed CPU cores. In a continuous checkpointing
scenario, hundreds (or more) of �ushing and compaction activities
(one for each stateful processing unit) will be launched upon each
checkpoint; they will likely collide with each other by forming
either scheduled or statistic ShadowSync as described in Section 3.
Other sources of ShadowSync. While we only show that �ushing
and compaction can cause ShadowSync, other asynchronous events
including garbage collection (GC) in JVM [49], CPU Dynamic Volt-
age and Frequency Scaling (DVFS) control that adjusts CPU power
based on dynamic workload [51], interference from VM colloca-
tions [50, 61] could also contribute to the ShadowSync problem in
real-time stream processing. For example, we have observed that
GCs activities in JVM with a conservative heap size allocation (e.g.,
40 GB in our case) are more likely to occur during a �ushing period
since Flink processes a large amount of Java objects within a very
short period of time. Power saving technologies like CPU DVFS
control, if enabled, would likely occur more frequently under the
dynamic workload and cause transient CPU throttling [51]. Given
the highly dynamic nature of these asynchronous events, we be-
lieve the ShadowSync problem is more common than reported in
this paper, which will be left for our future work.

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

0
1
2
3
4
5

120 140 160 180 200 220 240 260 280

tai
l

lat
en

cy
 [s

]

Timeline [s]

(a)
95th 99.9th

0
1
2
3
4
5

300 320 340 360 380 400 420 440 460

tai
l

lat
en

cy
 [s

]

Timeline [s]

(b)
95th 99.9th

0
0.5

1
1.5

2
2.5

3
3.5

4

120 140 160 180 200 220 240 260 280

flu
sh

en
d-

to
-e

nd
 t

im
e

[s
]

Timeline [s]

(c)

0
0.5

1
1.5

2
2.5

3
3.5

4

300 320 340 360 380 400 420 440 460

flu
sh

en
d-

to
-e

nd
 t

im
e

[s
]

Timeline [s]

(d)

0
0.5

1
1.5

2
2.5

3
3.5

4

120 140 160 180 200 220 240 260 280

co
m

pa
ct

io
n

en
d-

to
-e

nd
 t

im
e

[s
]

Timeline [s]

(e)

0
0.5

1
1.5

2
2.5

3
3.5

4

300 320 340 360 380 400 420 440 460

co
m

pa
ct

io
n

en
d-

to
-e

nd
 t

im
e

[s
]

Timeline [s]

(f)

Figure 18. Our proposed mitigation methods can e�ectively reduce the overlap between highly concurrent �ushing and compaction activities
within a Kafka Streams Word Count application. Figure (a)(c)(e) show the performance metrics of the baseline case in Figure 17, while
(b)(d)(f) show the corresponding metrics of the solution case in Figure 17 after our proposed mitigation methods are applied.

0

1

2

3

220 240 260 280 300 320 340

tai
l l

ate
nc

y [
s]

Timeline [s]

95th 99.9th

(a) Without our mitigation methods.

0

1

2

3

420 440 460 480 500 520 540

tai
l l

ate
nc

y [
s]

Timeline [s]

95th 99.9th

(b) With our mitigation methods.
Figure 19. Our mitigation methods can e�ectively reduce the la-
tency long tail caused by ShadowSync in Flink when RocksDB is
deployed on nodes that equip NVMe SSDs.

7 Related Work
Previous research on solving the latency long tail problem of real-
time stream processing systems can be broadly categorized into
three classes:
Optimizing checkpoint mechanisms to mitigate the latency
long tail in streaming data�ows has been studied before [1, 2, 29,
30, 41, 54]. For example, SILK [3] mitigates latency long tail in LSM-
based key-value stores by scheduling I/O bandwidth to internal
�ushing and compaction operations in a single key-value store
instance to alleviate disk I/O contention between them. Incremental
checkpointing [8] is a canonical way to avoid large intermittent
internal bursts and improve the tail latency performance of large-
scale streaming processing systems. These methods can e�ectively
reduce the intensity of the frequent intermittent internal workload
bursts, however, the periodic overlapped mode (i.e., ShadowSync)
caused by �ushing and compaction in a stream processing system
still exists, which could lead to signi�cant CPU contention and a
latency long tail problem.
Identifying root causes of intermittent internal variance that
causes millibottlenecks and latency long tail in the cloud [22, 49, 56].

0
1
2
3
4
5

420 450 480 510 540 570 600
tai

l l
ate

nc
y [

s]

Timeline [s]

95th 99.9th

(a) Without our mitigation methods.

0
1
2
3
4
5

420 450 480 510 540 570 600

tai
l l

ate
nc

y [
s]

Timeline [s]

95th 99.9th

(b) With our mitigation methods.
Figure 20. Our mitigation methods can e�ectively reduce the la-
tency long tail caused by ShadowSync in Kafka Streams when
RocksDB is deployed on nodes that equip NVMe SSDs.

For example, both Microscope [27] and MicroRCA [53] construct a
service causal graph to infer the root causes of performance prob-
lems in real-time. FIRM [39] leverages �ne-grained measurement
data and machine-learning methods to adaptively localize com-
ponents that cause SLO violations and identify the root causes of
low-level resource contention in the critical paths. However, none
of these approaches has the capability of detecting and locating the
variance outside of the critical path, which could become a signi�-
cant source of the latency long tail problem through the formation
of millibottlenecks (see Section 3).
Providing automatic scaling techniques to elasticize resources
(e.g., CPU) for cloud applications [18, 23, 24, 40, 59]. For example,
autoscaling approaches for distributed data�ows [20, 26, 28, 55, 60]
make scaling decisions on the number of underlying processing
units (e.g., operator or container) without considering low-level
shared-resource interference. FIRM [39] adopts a machine learning
approach to abstract a class of resource contention problems. In
our study, we conduct �ne-grained (e.g., 50ms granularity) timeline
analysis of metrics across di�erent system components to help de-
velopers/system admins understand the “unexpected” ShadowSync

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

problem between maintenance operations and normal operations,
which compliments their study.

To our best knowledge, the development of mitigating frequent
millibottlenecks and latency long tail for real-time stream process-
ing applications so far mainly focuses on alleviating the perfor-
mance variance localized in the critical paths. However, we found
millibottlenecks with intense resource requirements outside of crit-
ical paths can also cause signi�cant latency long tail problems at
moderate average utilization levels. Our work is the �rst paper to
demonstrate the impact of millibottlenecks outside of critical paths
on tail latency performance in real-time streaming applications.

8 Conclusion
Mission-critical, real-time, continuous stream processing applica-
tions such as real-time analytics and real-time advertising have
stringent latency requirements due to their close interactions with
the real world. Due to the evolution of real-world large-scale stream
processing applications [34], the latency long-tail problem in real-
time stream processing systems has received increasing scrutiny.
A recent study [39] demonstrated a correlation between execution
time variance of critical path and latency long tail in microservices
systems. In this paper, our study shows that the variance in critical
path latency may be the tip of an iceberg of latency long tail.

Using a benchmark of real-time tra�c analytics, asynchronous
workload bursts completely outside of the critical path are shown
to cause signi�cant latency long tail. These workload bursts are
generated by asynchronous maintenance tasks inherent to the LSM-
tree �le structure: �ushing in-memory data to disk, and compaction
of layered �les on disk. The workload bursts create short but intense
CPU millibottlenecks, which in turn generate application-level
queuing that results in latency long tail. The millibottlenecks and
their queuing e�ects are aggravated by multiple maintenance tasks
that overlap in time, a phenomenon called ShadowSync.

We show abundant evidence of overlapping ShadowSync phe-
nomena in our experiments. They can be divided into two groups:
scheduled (Section 3.2), caused by �xed periods between mainte-
nance operations, and statistical (Section 3.3), where millibottle-
necks are created by overlapping �ushing and compaction oper-
ations from a large number of stages due to scale-out con�gura-
tions. For each group, we describe and evaluate mitigation meth-
ods to avoid and/or reduce ShadowSync (Section 4) through de-
synchronization techniques. For example, randomizing the period
between consecutive �ushing (and compaction) operations reduces
the probability of overlap for scheduled ShadowSync. Another ex-
ample is a careful choice of soft resource allocation (e.g., �ushing
and compaction thread pools) to reduce the number and length
of asynchronous operations and therefore reduce their statistical
overlap and ShadowSync. Experiments con�rm these mitigation
methods to be e�ective in reducing ShadowSync (Section 5).

This improved understanding of ShadowSync in asynchronous
workload bursts in real-time stream processing applications and
their mitigation can reduce signi�cantly the risks of real-time
stream processing applications caused by latency long tail.

Acknowledgments
We thank the anonymous reviewers and our shepherd for their
feedback on improving this paper. This research has been par-
tially funded by National Science Foundation by CNS (2000681),

RCN (1550379), CRISP (1541074), SaTC (1564097) programs, and
gifts, grants, or contracts from Fujitsu, HP, Intel, and Georgia Tech
Foundation through the John P. Imlay, Jr. Chair endowment. Any
opinions, �ndings, and conclusions are those of the author(s) and do
not necessarily re�ect the views of the National Science Foundation
or other funding agencies mentioned above.

References
[1] Muhammad Yousuf Ahmad and Bettina Kemme. 2015. Compaction Management

in Distributed Key-Value Datastores. Proc. VLDB Endow. 8, 8 (apr 2015), 850–861.
h�ps://doi.org/10.14778/2757807.2757810

[2] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy Zwaenepoel, Huapeng
Yuan, Aashray Arora, Karan Gupta, and Pavan Konka. 2017. TRIAD: Creating
Synergies between Memory, Disk and Log in Log Structured Key-Value Stores. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference
(Santa Clara, CA, USA) (USENIX ATC ’17). USENIX Association, USA, 363–375.

[3] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chand-
hiramoorthi, and Diego Didona. 2019. SILK: Preventing Latency Spikes in
Log-Structured Merge Key-Value Stores. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 753–766. h�ps:
//www.usenix.org/conference/atc19/presentation/balmau

[4] Net�ix Technology Blog. 2016. Application data caching using SSDs: The Moneta
project: Next generation EVCache for better cost optimization. Retrieved May 22,
2022 from h�ps://netflixtechblog.com/application-data-caching-using-ssds-
5bf25df851ef

[5] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink®: Consistent Stateful Dis-
tributed Stream Processing. Proc. VLDB Endow. 10, 12 (aug 2017), 1718–1729.
h�ps://doi.org/10.14778/3137765.3137777

[6] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei,
Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
2016. Realtime Data Processing at Facebook. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (San Francisco, California, USA) (SIG-
MOD ’16). Association for Computing Machinery, New York, NY, USA, 1087–1098.
h�ps://doi.org/10.1145/2882903.2904441

[7] Xie Chen, Yu Wu, Zhenghao Wang, Shujie Liu, and Jinyu Li. 2021. Developing
real-time streaming transformer transducer for speech recognition on large-scale
dataset. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (Toronto, ON, Canada). IEEE, 5904–5908.

[8] Bonaventura Del Monte, Ste�en Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: E�cient Management of Very Large Distributed State for Stream Pro-
cessing Engines. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 2471–2486. h�ps:
//doi.org/10.1145/3318464.3389723

[9] Facebook. 2021. RocksDB. Retrieved Feb 14, 2021 from h�ps://rocksdb.org/
[10] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-

masamy. 2017. Dhalion: Self-Regulating Stream Processing in Heron. Proc. VLDB
Endow. 10, 12 (aug 2017), 1825–1836. h�ps://doi.org/10.14778/3137765.3137786

[11] Flink Forward. 2018. eBay Monitoring Platform Preprocessing and Alerting on
Flink | Flink Forward | 9-10 April 2018 | San Francisco. Retrieved August 22,
2022 from h�ps://sf-2018.flink-forward.org/index.html%3Fp=4168.html

[12] Flink Forward. 2018. Finding Bad Acorns | Flink Forward | 9-10 April 2018 | San
Francisco. Retrieved August 22, 2022 from h�ps://sf-2018.flink-forward.org/
index.html%3Fp=4078.html

[13] The Apache Software Foundation. 2021. Apache Flink®: Stateful Computations
over Data Streams. Retrieved Feb 14, 2021 from h�ps://flink.apache.org/

[14] The Apache Software Foundation. 2021. Apache Samza. Retrieved Feb 14, 2021
from h�p://samza.apache.org/

[15] The Apache Software Foundation. 2021. Dynamic resource allocation in
spark. Retrieved Feb 14, 2021 from h�ps://spark.apache.org/docs/latest/job-
scheduling.html#dynamic-resource-allocation

[16] The Apache Software Foundation. 2021. Kafka. Retrieved Feb 14, 2021 from
h�ps://kafka.apache.org/0102/documentation/streams/

[17] The Apache Software Foundation. 2022. Apache Cassandra | Apache Cassandra
Documentation. Retrieved August 22, 2022 from h�ps://cassandra.apache.org/
_/index.html

[18] Tom ZJ Fu, Jianbing Ding, Richard TB Ma, Marianne Winslett, Yin Yang, and
Zhenjie Zhang. 2017. DRS: Auto-scaling for real-time stream analytics. IEEE/ACM
Transactions on Networking 25, 6 (2017), 3338–3352.

[19] Moojan Ghafurian, David Reitter, and Frank E. Ritter. 2020. Countdown Timer
Speed: A Trade-o� between Delay Duration Perception and Recall. ACM Trans.
Comput.-Hum. Interact. 27, 2, Article 11 (mar 2020), 25 pages. h�ps://doi.org/
10.1145/3380961

[20] Alim Ul Gias, Giuliano Casale, and Murray Woodside. 2019. ATOM: Model-
driven autoscaling for microservices. In 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS) (Dallas, TX, USA). IEEE, 1994–2004.

https://doi.org/10.14778/2757807.2757810
https://www.usenix.org/conference/atc19/presentation/balmau
https://www.usenix.org/conference/atc19/presentation/balmau
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://doi.org/10.14778/3137765.3137777
https://doi.org/10.1145/2882903.2904441
https://doi.org/10.1145/3318464.3389723
https://doi.org/10.1145/3318464.3389723
https://rocksdb.org/
https://doi.org/10.14778/3137765.3137786
https://sf-2018.flink-forward.org/index.html%3Fp=4168.html
https://sf-2018.flink-forward.org/index.html%3Fp=4078.html
https://sf-2018.flink-forward.org/index.html%3Fp=4078.html
https://flink.apache.org/
http://samza.apache.org/
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://kafka.apache.org/0102/documentation/streams/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://doi.org/10.1145/3380961
https://doi.org/10.1145/3380961

ShadowSync Middleware ’22, November 7–11, 2022,�ebec, QC, Canada

[21] Mike Gualtieri. 2021. The Forrester Wave™: Streaming Analytics, Q2 2021. Re-
trieved May 22, 2022 from h�ps://www.forrester.com/report/the-forrester-wave-
streaming-analytics-q2-2021/RES161547

[22] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. 2017. Performance Mon-
itoring and Root Cause Analysis for Cloud-Hosted Web Applications. In Pro-
ceedings of the 26th International Conference on World Wide Web (Perth, Aus-
tralia) (WWW ’17). International World Wide Web Conferences Steering Com-
mittee, Republic and Canton of Geneva, CHE, 469–478. h�ps://doi.org/10.1145/
3038912.3052649

[23] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2020. WASP: Wide-Area
Adaptive Stream Processing. In Proceedings of the 21st International Middleware
Conference (Delft, Netherlands) (Middleware ’20). Association for Computing Ma-
chinery, New York, NY, USA, 221–235. h�ps://doi.org/10.1145/3423211.3425668

[24] Vasiliki Kalavri, John Liagouris, Moritz Ho�mann, Desislava Dimitrova, Matthew
Forshaw, and Timothy Roscoe. 2018. Three Steps is All You Need: Fast, Accurate,
Automatic Scaling Decisions for Distributed Streaming Data�ows. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI’18). USENIX Association, USA, 783–798.

[25] Faria Kalim, Thomas Cooper, Huijun Wu, Yao Li, Ning Wang, Neng Lu, Maosong
Fu, Xiaoyao Qian, Hao Luo, Da Cheng, Yaliang Wang, Fred Dai, Mainak Ghosh,
and Beinan Wang. 2019. Caladrius: A Performance Modelling Service for Dis-
tributed Stream Processing Systems. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). Macao, China, 1886–1897. h�ps://doi.org/10.1109/
ICDE.2019.00204

[26] Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema. 2019. Self-
Adaptive Executors for Big Data Processing. In Proceedings of the 20th Interna-
tional Middleware Conference (Davis, CA, USA) (Middleware ’19). Association for
Computing Machinery, New York, NY, USA, 176–188. h�ps://doi.org/10.1145/
3361525.3361545

[27] JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Microscope: Pinpoint perfor-
mance issues with causal graphs in micro-service environments. In International
Conference on Service-Oriented Computing. 3–20.

[28] Pinchao Liu, Dilma Da Silva, and Liting Hu. 2021. DART: A Scalable and Adaptive
Edge Stream Processing Engine. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, 239–252. h�ps://www.usenix.org/
conference/atc21/presentation/liu

[29] Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang, Sarker Tanzir Ahmed,
and Liting Hu. 2020. FP4S: Fragment-based Parallel State Recovery for Stateful
Stream Applications. In 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (New Orleans, LA, USA). IEEE, 1102–1111.

[30] Chen Luo and Michael J. Carey. 2019. On Performance Stability in LSM-Based
Storage Systems. Proc. VLDB Endow. 13, 4 (dec 2019), 449–462. h�ps://doi.org/
10.14778/3372716.3372719

[31] Chen Luo and Michael J. Carey. 2020. LSM-Based Storage Techniques: A Survey.
The VLDB Journal 29, 1 (jan 2020), 393–418. h�ps://doi.org/10.1007/s00778-019-
00555-y

[32] Mark Marchukov. 2017. LogDevice: a distributed data store for logs. Retrieved
May 22, 2022 from h�ps://engineering.fb.com/2017/08/31/core-data/logdevice-
a-distributed-data-store-for-logs/

[33] Hamid Nasiri, Saeed Nasehi, andMaziar Goudarzi. 2019. Evaluation of distributed
stream processing frameworks for IoT applications in Smart Cities. Journal of
Big Data 6, 1 (2019), 1–24.

[34] Cao Duc Nguyen. 2020. A Design Analysis of Cloud-based Microservices Architec-
ture at Net�ix. Retrieved May 6, 2021 from h�ps://medium.com/swlh/a-design-
analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f

[35] Xu Ning and Maxim Fateev. 2016. Cherami: Uber Engineering’s durable and
scalable task queue in Go. Retrieved May 22, 2022 from h�ps://eng.uber.com/
cherami-message-queue-system/

[36] The University of Utah. 2021. CloudLab. Retrieved Feb 14, 2021 from h�ps:
//www.cloudlab.us/

[37] Takafumi Onishi, Julius Michaelis, and Yasuhiko Kanemasa. 2020. Recovery-
conscious adaptive watermark generation for time-order event stream processing.
In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (IoTDI) (Sydney, NSW, Australia). IEEE, 66–78.

[38] Calton Pu, Joshua Kimball, Chien-An Lai, Tao Zhu, Jack Li, Junhee Park, Qingyang
Wang, Deepal Jayasinghe, Pengcheng Xiong, Simon Malkowski, et al. 2017. The
millibottleneck theory of performance bugs, and its experimental veri�cation.
In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS) (Atlanta, GA, USA). IEEE, 1919–1926.

[39] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. 2020. FIRM: An Intelligent Fine-Grained Resource Management
Framework for SLO-Oriented Microservices. In Proceedings of the 14th USENIX
Conference on Operating Systems Design and Implementation (OSDI’20). USENIX
Association, USA, Article 46, 21 pages.

[40] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. 2018. Auto-Scaling
Web Applications in Clouds: A Taxonomy and Survey. ACM Comput. Surv. 51, 4,
Article 73 (jul 2018), 33 pages. h�ps://doi.org/10.1145/3148149

[41] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
PebblesDB: Building Key-Value Stores Using Fragmented Log-Structured Merge
Trees. In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York,

NY, USA, 497–514. h�ps://doi.org/10.1145/3132747.3132765
[42] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011. Find-

ing a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior. In
Proceedings of the 2011 31st International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW ’11). IEEE Computer Society, USA, 166–171.
h�ps://doi.org/10.1109/ICDCSW.2011.20

[43] Scylla. 2022. P99 CONF: the event for developers who care about high-performance,
low-latency applications. Retrieved May 16, 2022 from h�ps://www.p99conf.io/

[44] Amazon Web Services. 2022. Amazon Kinesis Data Analytics: Gain actionable in-
sights from streaming data with serverless, fully managed Apache Flink. Retrieved
May 22, 2022 from h�ps://aws.amazon.com/kinesis/data-analytics/

[45] Huasong Shan, Qingyang Wang, and Qiben Yan. 2018. Very Short Intermittent
DDoS Attacks in an Unsaturated System. h�ps://doi.org/10.1007/978-3-319-
78813-5_3

[46] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@twitter. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (Snowbird, Utah, USA) (SIGMOD ’14). Association for ComputingMachinery,
New York, NY, USA, 147–156. h�ps://doi.org/10.1145/2588555.2595641

[47] Selima Triki. 2022. The real-time data revolution. h�ps://digazu.com/2022/04/
07/the-real-time-data-revolution/

[48] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast
and Adaptable Stream Processing at Scale. In Proceedings of the 26th Symposium
on Operating Systems Principles (Shanghai, China) (SOSP ’17). Association for
Computing Machinery, New York, NY, USA, 374–389. h�ps://doi.org/10.1145/
3132747.3132750

[49] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Deepal Jayasinghe, Toshihiro
Shimizu, Masazumi Matsubara, Motoyuki Kawaba, and Calton Pu. 2013. Detect-
ing transient bottlenecks in n-tier applications through �ne-grained analysis.
In 2013 IEEE 33rd International Conference on Distributed Computing Systems
(Philadelphia, PA, USA). IEEE, 31–40.

[50] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien-An Lai, Chien-An Cho,
Yuji Nomura, and Calton Pu. 2014. Lightning in the cloud: A study of transient
bottlenecks on n-tier web application performance. In 2014 Conference on Timely
Results in Operating Systems (TRIOS 14). USENIX Association, Broom�eld, CO.
h�ps://www.usenix.org/conference/trios14/technical-sessions/presentation/
wang

[51] Qingyang Wang, Yasuhiko Kanemasa, Jack Li, Chien An Lai, Masazumi Mat-
subara, and Calton Pu. 2013. Impact of DVFS on N-Tier Application Per-
formance. In Proceedings of the First ACM SIGOPS Conference on Timely Re-
sults in Operating Systems (Farmington, Pennsylvania) (TRIOS ’13). Association
for Computing Machinery, New York, NY, USA, Article 5, 16 pages. h�ps:
//doi.org/10.1145/2524211.2524220

[52] Qingyang Wang, Shungeng Zhang, Yasuhiko Kanemasa, Calton Pu, Balaji
Palanisamy, Lilian Harada, and Motoyuki Kawaba. 2019. Optimizing N-Tier
Application Scalability in the Cloud: A Study of Soft Resource Allocation. ACM
Trans. Model. Perform. Eval. Comput. Syst. 4, 2, Article 10 (jun 2019), 27 pages.
h�ps://doi.org/10.1145/3326120

[53] Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. Microrca: Root cause
localization of performance issues in microservices. In NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium (Budapest, Hungary). IEEE,
1–9.

[54] Hailu Xu, Pinchao Liu, Susana Cruz-Diaz, Dilma Da Silva, and Liting Hu. 2020.
SR3: Customizable Recovery for Stateful Stream Processing Systems. In Pro-
ceedings of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York, NY, USA,
251–264. h�ps://doi.org/10.1145/3423211.3425681

[55] Le Xu, Boyang Peng, and Indranil Gupta. 2016. Stela: Enabling stream process-
ing systems to scale-in and scale-out on-demand. In 2016 IEEE International
Conference on Cloud Engineering (IC2E) (Berlin, Germany). IEEE, 22–31.

[56] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo Mai, and Rahul Potharaju.
2021. Move Fast and Meet Deadlines: Fine-grained Real-time Stream Pro-
cessing with Cameo. In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21). USENIX Association, 389–405. h�ps:
//www.usenix.org/conference/nsdi21/presentation/xu

[57] Wei D. Xu, Matthew J. Burns, Frédéric Cherqui, and Tim D. Fletcher. 2021. En-
hancing stormwater control measures using real-time control technology: a
review. Urban Water Journal 18, 2 (2021), 101–114. h�ps://doi.org/10.1080/
1573062X.2020.1857797 arXiv:https://doi.org/10.1080/1573062X.2020.1857797

[58] Hisatoshi Yamaoka, Kota Itakura, Eiichi Takahashi, Gaku Nakagawa, Julius
Michaelis, Yasuhiko Kanemasa, Miwa Ueki, Tatsuro Matsumoto, Riichiro Take,
Sayuri Tanie, and Daigo Inoue. 2019. Dracena: A Real-Time IoT Service Plat-
form Based on Flexible Composition of Data Streams. In 2019 IEEE/SICE Inter-
national Symposium on System Integration (SII). Paris, France, 596–601. h�ps:
//doi.org/10.1109/SII.2019.8700465

[59] Zhe Yang, Phuong Nguyen, Haiming Jin, and Klara Nahrstedt. 2019. MIRAS:
Model-based reinforcement learning for microservice resource allocation over
scienti�c work�ows. In 2019 IEEE 39th International Conference on Distributed

https://www.forrester.com/report/the-forrester-wave-streaming-analytics-q2-2021/RES161547
https://www.forrester.com/report/the-forrester-wave-streaming-analytics-q2-2021/RES161547
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3038912.3052649
https://doi.org/10.1145/3423211.3425668
https://doi.org/10.1109/ICDE.2019.00204
https://doi.org/10.1109/ICDE.2019.00204
https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/3361525.3361545
https://www.usenix.org/conference/atc21/presentation/liu
https://www.usenix.org/conference/atc21/presentation/liu
https://doi.org/10.14778/3372716.3372719
https://doi.org/10.14778/3372716.3372719
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://engineering.fb.com/2017/08/31/core-data/logdevice-a-distributed-data-store-for-logs/
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://medium.com/swlh/a-design-analysis-of-cloud-based-microservices-architecture-at-netflix-98836b2da45f
https://eng.uber.com/cherami-message-queue-system/
https://eng.uber.com/cherami-message-queue-system/
https://www.cloudlab.us/
https://www.cloudlab.us/
https://doi.org/10.1145/3148149
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1109/ICDCSW.2011.20
https://www.p99conf.io/
https://aws.amazon.com/kinesis/data-analytics/
https://doi.org/10.1007/978-3-319-78813-5_3
https://doi.org/10.1007/978-3-319-78813-5_3
https://doi.org/10.1145/2588555.2595641
https://digazu.com/2022/04/07/the-real-time-data-revolution/
https://digazu.com/2022/04/07/the-real-time-data-revolution/
https://doi.org/10.1145/3132747.3132750
https://doi.org/10.1145/3132747.3132750
https://www.usenix.org/conference/trios14/technical-sessions/presentation/wang
https://www.usenix.org/conference/trios14/technical-sessions/presentation/wang
https://doi.org/10.1145/2524211.2524220
https://doi.org/10.1145/2524211.2524220
https://doi.org/10.1145/3326120
https://doi.org/10.1145/3423211.3425681
https://www.usenix.org/conference/nsdi21/presentation/xu
https://www.usenix.org/conference/nsdi21/presentation/xu
https://doi.org/10.1080/1573062X.2020.1857797
https://doi.org/10.1080/1573062X.2020.1857797
https://arxiv.org/abs/https://doi.org/10.1080/1573062X.2020.1857797
https://doi.org/10.1109/SII.2019.8700465
https://doi.org/10.1109/SII.2019.8700465

Middleware ’22, November 7–11, 2022,�ebec, QC, Canada Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu Liu, and Calton Pu

Computing Systems (ICDCS) (Dallas, TX, USA). IEEE, 122–132.
[60] Guangba Yu, Pengfei Chen, and Zibin Zheng. 2019. Microscaler: Automatic scal-

ing for microservices with an online learning approach. In 2019 IEEE International
Conference on Web Services (ICWS) (Milan, Italy). IEEE, 68–75.

[61] Shungeng Zhang, Huasong Shan, Qingyang Wang, Jianshu Liu, Qiben Yan, and
Jinpeng Wei. 2019. Tail ampli�cation in n-tier systems: a study of transient
cross-resource contention attacks. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS) (Dallas, TX, USA). IEEE, 1527–1538.

	Abstract
	1 Introduction
	2 Real-world Exemplar of the ShadowSync Problem
	3 Experimental Study of ShadowSync
	3.1 Experimental Environment
	3.2 Scheduled ShadowSync Flushing and Compaction within the Same Stage
	3.3 Statistical ShadowSync flushing and compaction across Stages

	4 Mitigation Methods
	4.1 Scheduled Desynchronization by Randomizing Intervals between Flushing and Compaction
	4.2 Statistical Desynchronization through Appropriate Soft Resource Allocations

	5 Experimental Evaluation
	5.1 Case 1: Real-time Traffic Jam Ranking in Flink
	5.2 Case 2: Word Count in Kafka Streams
	5.3 Evaluation with NVMe SSDs

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

