
Sora: A Latency Sensitive Approach for Microservice Soft
Resource Adaptation

Jianshu Liu

Louisiana State University

Baton Rouge, USA

jliu96@lsu.edu

Qingyang Wang

Louisiana State University

Baton Rouge, USA

qwang26@lsu.edu

Shungeng Zhang

Augusta University

Augusta, USA

szhang2@augusta.edu

Liting Hu

University of California Santa Cruz

Santa Cruz, USA

liting@ucsc.edu

Dilma Da Silva

Texas A&M University

College Station, USA

dilma@cse.tamu.edu

ABSTRACT
Fast response time for modern web services that include numerous

distributed and lightweight microservices becomes increasingly

important due to its business impact. While hardware-only re-

source scaling approaches (e.g., FIRM [47] and PARSLO [40]) have

been proposed to mitigate response time fluctuations on critical

microservices, the re-adaptation of soft resources (e.g., threads or

connections) that control the concurrency of hardware resource

usage has been largely ignored. This paper shows that the soft re-

source adaptation of critical microservices has a significant impact

on system scalability because either under- or over-allocation of

soft resources can lead to inefficient usage of underlying hardware

resources. We present Sora, an intelligent, fast soft resource adapta-

tion management framework for quickly identifying and adjusting

the optimal concurrency level of critical microservices to mitigate

service-level objective (SLO) violations. Sora leverages online fine-

grained system metrics and the propagated deadline along the

critical path of request execution to quickly and accurately provide

optimal concurrency setting for critical microservices. Based on six

real-world bursty workload traces and two representative microser-

vices benchmarks (Sock Shop and Social Network), our experimental

results show that Sora can effectively mitigate large response time

fluctuations and reduce the 99th percentile latency by up to 2.5×
compared to the hardware-only scaling strategy FIRM [47] and 1.5×
to the state-of-the-art concurrency-aware system scaling strategy

ConScale.

CCS CONCEPTS
• General and reference → Performance; Experimentation; •
Computer systems organization→ Cloud computing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0177-1/23/12. . . $15.00

https://doi.org/10.1145/3590140.3592851

KEYWORDS
Scalability, Microservices, Auto-scaling, Soft Resource

ACM Reference Format:
Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma

Da Silva. 2023. Sora: A Latency Sensitive Approach for Microservice Soft

Resource Adaptation. In 24th International Middleware Conference (Middle-
ware ’23), December 11–15, 2023, Bologna, Italy. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3590140.3592851

1 INTRODUCTION
In recent years, modern user-facing applications have witnessed a

wide adoption of microservices-based architecture. Many industry

practitioners, such as Twitter [1], Netflix [5], and Alibaba [36], have

migrated their applications from the classic monolithic design to

microservices. An important reason is that the microservices-based

architecture can decouple an application into tens or hundreds of

loosely-coupled microservices to provide superior scalability. The

scalable fine-grained component microservices [46] can provide

greater performance control by only adding system resources to

the components needing extra capacity. However, achieving effi-

cient resource scaling for microservices is challenging since the

applications must meet stringent Service-Level Objectives (SLOs)

like bounded response time while handling the naturally bursty

workload. For example, Amazon found that every 100ms of latency

cost them 1% in sales when facing 20× normal-traffic of peak load

over holidays (e.g., Black Friday) [15].

A recent study [47] explored the hardware-only resource scal-

ing approach for the critical microservice instances to handle the

bursty workload. A significant insight is that the transient con-

tention of low-level shared hardware resources such as caches and

memory is the major contributing factor to service-level objectives

(SLOs) violation. However, they barely discuss the complex soft re-

source (e.g., threads or database connections) re-adaptation of these

microservices to match the hardware resource changes after the

system scaling, which has been shown to impact the overall system

performance significantly [33, 64]. For example, Figure 1 shows

that the hardware-only Kubernetes Horizontal Pod Autoscaling [7]

cannot reduce the response time spikes due to over-allocation of the

database connection pool inside the critical microservice. Recent

work [33] has proposed a Concurrency-aware system Scaling (Con-

Scale) framework that can quickly adapt key servers’ soft resource

allocations after system scaling. However, ConScale is throughput

https://doi.org/10.1145/3590140.3592851
https://doi.org/10.1145/3590140.3592851

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

 0

 800

 1600

E
n
d
-t
o
-e
n
d

L
a
te
n
cy
 [
m
s]

Kubernetes Autoscaling Sora

 0

 100

 200

C
a
ta
lo
g
u
e

C
P
U
 U
til
 [
%
]

Scale Out

 0

 400

 800

 0 30 60 90 120 150 180

E
st
a
b
lis
h
e
d

D
B
 C
o
n
n
 [
#
]

Timeline [s]

Figure 1: Large response time fluctuations of microservices
due to over-allocation of soft resources (e.g., database connec-
tions) when Kubernetes Horizontal Pod Autoscaling (HPA)
scales out the bottleneck service.

centric and cannot adapt the soft resource allocations for latency-

sensitive microservices applications due to the lack of consideration

of the runtime deadline for critical microservices along the critical

paths in the system (Section 3.2).

In this paper, we propose Sora, an online soft resource adaptation

management framework to quickly recommend and reconfigure

soft resource allocations (e.g., server threads and database connec-

tions) for critical microservices to mitigate large response time

variations. Sora leverages online fine-grained monitoring metrics

(e.g., throughput, response time, and concurrency) to capture the

runtime state of each component microservice and then integrates

the runtime propagated deadline of critical microservices along the

critical paths in the system for the prediction of rational concur-

rency settings.

Our Sora approach is based on two key observations. First, con-

currency settings are controlled by soft resource allocations, which

greatly impact the effective use of underlying hardware resources.

For example, a conservative allocation (e.g., too small thread pool)

may choke concurrent request processing that creates long request

queues (thus longer delay), while a liberal allocation often wastes

hardware resources such as CPU and memory. Second, concurrency

settings have a large impact on the response time distribution of

each runtime microservice; thus, the optimal setting is sensitive

to the runtime deadline of critical microservices along the critical

path. Figure 1 shows the need for Sora, which is applied to the

runtime adaptation of a database connection pool size of the critical

microservice Catalogue when scaling the Sock Shop [6] microser-

vices benchmark application to achieve both good performance and

high efficiency.

The first contribution of the paper is an empirical demonstra-

tion (based on two representative microservice benchmarks, Sock
Shop [6] and Social Network [16]) that optimal concurrency settings

can shift significantly under varied deadline requirements and sys-

tem runtime conditions. For example, we show that a sub-optimal

allocation of threads under the same hardware provisioning (e.g.,

CPU limit) could become the optimal allocation once we change

the response time deadline from 250ms to 150ms (see Figures 3(a)

and 3(b)). We also observed that, given the same response time

deadline, the optimal thread pool size for a microservice instance

has a non-linear increase from 10 to 30 after the CPU limit scales

up from 2-core to 4-core (see Figures 3(a) and 3(c)).

The second contribution is our novel Scatter-Concurrency-

Goodput (SCG) model, which integrates response time deadline

into the runtime concurrency adaptation management when scal-

ing microservices in clouds. Our model takes fine-grained runtime

monitoring metrics (e.g., throughput, response time, and con-

currency) as input and makes dynamic concurrency adaptation

decisions based on a propagated deadline of the critical microser-

vice, which can capture each subtle change of system runtime

conditions (Section 3).

The third contribution is the design and implementation of the

Sora framework, which exploits our latency-sensitive SCG model

to coordinate the hardware and soft resources provisioning in mi-

croservices scaling management (Section 4). We conduct extensive

experiments using six real-world bursty workload traces [17] (see

Table 2), and our experimental results demonstrate that Sora can

effectively alleviate large response time fluctuations and reduce the

99th percentile latencies by up to 2.5× compared to state-of-the-art

hardware-only scaling strategy FIRM [47], and 1.5× to the state-of-

the-art concurrency-aware system scaling strategy ConScale [33].

The rest of the paper is organized as follows. Section 2 presents

experimental evidence that sub-optimal soft resource allocation

leads to significant performance loss. Section 3 introduces our

Scatter-Concurrency-Goodput (SCG) model. Section 4 illustrates

the design and implementation of our framework Sora. Section 5

shows the experimental results under six real-world workload

traces. Section 6 discusses the scalability and applicability of Sora.

Section 7 summarizes the related work, and Section 8 concludes

the paper.

2 BACKGROUND AND MOTIVATION
2.1 Soft Resources in Microservices
Hardware resources such as CPU, memory, and network are well-

defined components in the performance evaluation of computer sys-

tems. We use the term soft resources to refer to the system software

components such as threads and TCP connections that utilize hard-

ware resources. For example, threads use CPU and memory, and

TCP connections multiplex network I/O. In general, soft resources

are key system components that control the concurrency level of a

server and facilitate the sharing of hardware resources. Previous

studies [37, 38, 65] have demonstrated that optimal soft resource al-

location (e.g., thread pool and connection pool) plays an important

role in the scalability of traditional monolithic n-tier web-facing ap-

plications in clouds because either under- or over-allocation could

cause inefficient use of underlying hardware resources. Compared

to traditional monolithic n-tier architecture, finding the optimal

soft resource allocation for microservices-based applications is a

greater challenge due to the following three reasons:

Finer-grained resource management. Unlike traditional

monolithic n-tier architectures that deploy servers on physical ma-

chines or VMs, microservices adopt a more lightweight and more

agile container-based virtualization technique such as Docker [14],

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy

OpenVZ [62], and Linux Containers [12]. In this case, container-

based microservices can support even finer-grained resource man-

agement than VM-based applications. For example, the Kubernetes

container-orchestration system provides CPU quotas level resource

allocation among microservices [30]. Such finer-grained hardware

resource management makes precise matching of hardware and

soft resource allocations a great challenge.

Heterogeneous service implementation. Microservices-

based applications are typically integrated with component services

implemented in different programming languages and platforms.

For example, the Cart service in the Sock Shop application [6] is

built upon SpringBoot [57], which adopts an embedded thread pool

to manage connections. On the other hand, the Catalogue service

is written in Golang [19], which delegates connection management

to asynchronous goroutines (Figure 2). The heterogeneity of com-

ponent services in microservices-based applications complicates

the overall optimal soft resource allocations since each component

service may have its own unique characteristics and demand for

optimal soft resource allocation.

Complex inter-service dependency. Compared to traditional

monolithic n-tier architectures, microservices-based applications

generally have a more complex inter-service dependency [36]. This

is because microservices decompose the application into small, sin-

gular, and discrete services that implement business logic, resulting

in a significantly large number of microservices components. For

example, JD.com, China’s largest e-commerce site, runs approx-

imately 34,000 microservices on a 500,000-container cluster [32].

Each microservice typically interacts with hundreds or even thou-

sands of other microservices, sometimes forming a long invocation

chain. Such complex inter-service dependency makes it difficult

to identify critical component services and conduct corresponding

soft resource allocation tuning.

2.2 Experimental Setup
We adopt two representative open-sourced microservice bench-

marks: Sock Shop [6] with 11 component microservices and Social
Network with 36 microservices from DeathStarBench Suite [16]

(see Figure 2). Sock Shop is an e-commerce website that allows

customers to navigate and purchase different types of socks. So-

cial Network is a broadcast-style social network website that al-

lows users to publish and read social media posts. To illustrate

the complexity of optimal soft resource allocations for heteroge-

neous component services, we evaluate three representative soft

resources from the two benchmark applications – the thread pool

in a SpringBoot-based microservice (i.e., Cart), the database connec-

tion pool in a Golang-based microservice (i.e., Catalogue), and the

request connection pool in an Apache Thrift-based microservice

(i.e., Home-Timeline). To simulate normal user access to the appli-

cations, we use the classic RUBBoS workload generator [11] to send

HTTP requests. The request rate follows a Poisson distribution

with the mean determined by the number of simulated users.

We run experiments in our private VMware ESXi cluster [63].

Our cluster consists of 6 bare metal servers equipped with two

Intel Xeon E5-2603v3 processors (6 cores each @ 1.6GHz) and 16GB

of RAM. We deployed 18 VMs in the cluster, and each VM was

Recommender

Post
Storage

User

Order

User-db

Shipping Queue-
masterFront-end

Payment

Catalogue Catalogue-db

Cart-db
Built using Golang

Built using Spring Boot
Cart

Order-db

Front-end

Read Home
TimelineBuilt using C++

Social Graph

Compose
Post

UserTag

User
Timeline

Memcached

MongoDB

URL Shorten

Text

(i) Sock Shop

(ii) Social Network

Thread pool
Connection pool

Memcached

MongoDB

Memcached

MongoDB

Search

Index0

Index1

IndexN
…

Write User
Timeline

UniqueID

Media

User

Figure 2: Architecture of Sock Shop and Social Network mi-
croservice benchmark applications.

configured with 4 vCPUs, 4GB RAM, and 30GB disk space. Further-

more, we set up a Kubernetes cluster for container orchestration

and management. We run each microservice in one container and

further distribute the containers on the cluster. Docker (version

19.03.13) was used as the container runtime engine, and the Flannel

network was used for Kubernetes pod networking. In this paper,

we use the terms “pod” and “container” interchangeably since we

use the most common one-container-per-pod model [49].

2.3 Shifting of Optimal Soft Resource
Allocation during Runtime

Industry practitioners usually conduct offline parameter tuning [65]

or sandboxing [25] to identify the appropriate soft resource allo-

cations (i.e., concurrency settings) in microservices to improve

resource efficiency and meet their performance expectations. Web-

based e-commerce applications are typically latency-sensitive,

whereas Service Level Agreements (SLAs) are commonly used

to specify the desired response time of user requests to avoid

potential revenue loss. In this paper, we use a simplified SLA

model to illustrate the revenue tradeoffs between throughput and

response time and further evaluate the appropriate concurrency

settings. Our results suggest that static soft resource allocations are

not efficacious forever in the production phase. Fast and accurate

runtime optimal soft resource adaptation is critical to realizing

stable system performance.

For our simplified SLA model, we set a single threshold for the

end-to-end response time of requests (e.g., 250ms). We only count

requests with a response time equal to or below the threshold, de-

fined as goodput. On the contrary, the sum of requests with their

response time higher than the threshold is defined as badput. The
sum of goodput and badput amounts is the traditional definition of

throughput. The goodput model provides a better quantitative per-

formance evaluation of latency-sensitive web applications than the

throughput model since it considers the potential revenue loss due

to long response time. Then we rely on the goodput model to tune

the soft resource allocations in the benchmark applications and ob-

serve factors that may lead to the shifting of “optimal” concurrency

settings during system runtime.

Response Time Threshold Changing.We initially set a 250ms

response time threshold for requests accessing the Cart service from

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva
0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(a) 4-core Cart service with a 250ms
threshold. 30 threads allocation

achieves the highest goodput.

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(b) 4-core Cart service with a 150ms
threshold. 80 threads allocation

achieves the highest goodput.

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(c) 2-core Cart service with a 250ms
threshold. 10 threads allocation

achieves the highest goodput.

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(d) 2-core Cart service with a 350ms
threshold. 5 threads allocation

achieves the highest goodput.

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(e) Post Storage service serving light
requests. 10 connections allocation

achieves the highest goodput.

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

3 5 10 30 80 200

''Optimal'' Threads Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Thread pool Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

0

0.25

0.5

0.75

1

5 10 15 30 80 200

''Optimal'' Conn Alloc.

N
o
rm

a
liz
e
d
 G

o
o
d
p
u
t

Reqs Connection Size [#]

(f) Post Storage service serving heavy
requests. 30 connections allocation

achieves the highest goodput.

Figure 3: “Optimal” soft resource allocation shifts for Cart
and Post Storage as response time threshold, hardware provi-
sioning, or system state changes.

Sock Shop. Figure 3(a) shows that 30 threads allocation can achieve

the highest goodput in a 3-minute experiment since too few threads

cannot fully utilize the hardware resources (e.g., the 4-core CPU or

4 vCPU). In the meantime, too many threads result in performance

degradation due to non-trivial multithreading overhead [65]. How-

ever, in Figure 3(b), the “optimal” threads setting shifts to 80 when

we reset the response time threshold to 150ms. Such a shifting of

“optimal” threads setting is also observed in the 2-core Cart service

once we change the response time threshold from 250ms to 350ms,

shown in Figures 3(c) and 3(d).

The response time threshold affects the goodput measurement

because different threads allocation may lead to different response

time distributions. Figures 4(a) and 4(b) show the response time

distribution graphs when the 4-core Cart service was allocated 30

and 80 threads, respectively. By comparing the two distributions,

the 80-thread case clearly achieves a higher goodput than the 30-

thread with the response time threshold of 150ms. However, the

performance order is reversed once we reset the response time

threshold to 250ms since more requests fall within 250ms in the

30-thread case than that in the 80-thread case. Such experimen-

tal results have two implications: (1) the response time threshold

has a large impact on the optimal concurrency setting based on

goodput; (2) adapting concurrency settings according to changing

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 100 200 300 400 500 600 700

F
re

q
u

e
n

c
y

[#
]

Response time [ms]

150ms 250ms

(a) 30 threads allocation

 1

 10

 100

 1000

 10000

 100000

 1x106

 0 100 200 300 400 500 600 700

F
re

q
u

e
n

c
y

[#
]

Response time [ms]
(b) 80 threads allocation

Figure 4: Semi-log graphs of request response time distri-
bution of the 4-core Cart service configured with different
threads allocations. The 80-thread case outperforms the 30-thread

case with a response time threshold (RTT) of 150ms since the peak

dominates the total amounts of requests, but the performance order

reverses with RTT 250ms.

response time thresholds for microservices in the production phase

is necessary.

Hardware Resource Scaling. The vertical scaling (e.g., adding

or removing # of CPU cores) would affect the optimal concurrency

setting of a microservice instance. Figures 3(a) and 3(c) show that

the “optimal” thread pool allocation to reach the highest goodput

(with 250ms response time threshold) shifts from 10 to 30 when

the CPU limit for the Cart service scales up from 2-core to 4-core.

This is because the original optimal concurrency setting (i.e., 10

server threads) becomes under-allocation and cannot fully utilize 4

CPU cores after the system scaling. We have observed consistent

experimental results about the shift of optimal database connection

pool allocation in the Catalogue service as the CPU limit scales up.

System State Drifting. The system state of the backend ser-

vices could drift over runtime due to continuous dataset updates or

software upgrades, which leads to variations of the service time of

the involved service accordingly. Here we evaluate the Post Storage

service from Social Network and manually control the number of

posts accessed by the users to evaluate the impact of requests with a

light (retrieve 2 posts) and heavy (retrieve 10 posts) computation on

the optimal soft resource allocation. The computation for each user

request is proportional to the number of accessed posts. Figures 3(e)

and 3(f) show the optimal connections to the Post Storage service

(from the upstream Home Timeline service) shift from 10 to 30 once

the same type of requests changes from light to heavy due to the

state drifting of the dataset.

The above empirical observations demonstrate that different

soft resource allocations incur large performance variations. The

optimal soft resource allocation is always changing during system

runtime, depending on factors such as response time threshold se-

lection and runtime system conditions. Due to the naturally bursty

workload and the frequent hardware resource scaling in cloud envi-

ronments, service providers need an online model that can quickly

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy

HTTP Request HTTP ResponseTimeline

Front-end

Cart

Cart-db

Catalogue

Catalogue-db

Critical Path 1

Critical Path 2

Figure 5: An illustration of the execution path of a Catalogue
request in the Sock Shop benchmark.

and accurately provide appropriate soft resource allocations during

runtime.

3 SCATTER-CONCURRENCY-GOODPUT
MODEL

This section introduces an online Scatter-Concurrency-Goodput

(SCG) Model for optimal concurrency setting estimation for critical

microservice instances, which can resolve the limitations of existing

online approaches for concurrency adaptation (Section 3.1). Our

model correlates fine-grained application-level metrics (i.e., request

processing concurrency and goodput) within a short time window

(e.g., 3 minutes) and quickly recommends a concurrency setting

that can achieve the highest goodput (Section 3.2). We further

provide a sensitivity analysis of our SCG model (Section 3.3). Our

model aims to guarantee the response time requirements of critical

microservices with concurrency settings adaptation.

3.1 Limitations of Existing Online Models
Existing online models identify optimal concurrency settings by

building and revising the performancemodel during runtime [25, 33,

58] or applying a step-by-step heuristic approach such as Bayesian

optimization [10, 55, 75]. One big limitation is that these models

are throughput oriented. For example, ConScale [33] adopts an

online model to estimate the optimal resource allocations for each

service based on the correlation between the real-time fine-grained

throughput and concurrency of component servers within a 3-

minute time window. However, such a latency-agnostic throughput-

based model may not satisfy the SLOs of the microservices-based

applications. Nevertheless, fast adapting concurrency in microser-

vices to avoid SLO violations suffers from two challenges.

First, response time variation can be significantly amplified

due to the long invocation chain of service dependencies in

microservices-based applications. Compared to the traditional

monolithic architecture, the granularity of each microservice is

much smaller, and the depth of the call invocation chain becomes

much deeper than that in monolithic systems, leading to complex

inter-service dependency (call graphs) and further incurring the

latency long-tail phenomenon [36, 50, 58].

Second, microservice call graphs can be highly dynamic during

runtime [36, 47]. Specifically, microservices-based applications can

present significant topological differences during runtime (even for

the same online service), leading to variances in critical paths 1
.

1
A critical path to a call graph (triggered by a user request) is defined as the path of

maximal duration that starts with the user request and ends with the final response.

For example, either Cart or Catalogue can become the critical path

in the execution of a Catalogue request (see Figure 5), depending on
the underlying resource contention and external user inputs. The

dynamic behavior of critical paths would amplify the end-to-end

response time variations, which impacts the goodput measurement

and decreases the accuracy of model estimation.

3.2 Model Description
Our Scatter-Concurrency Goodput (SCG) model addresses the lim-

itations of classic online throughput-based models in two ways.

First, the SCG model uses goodput to improve the model sensitivity.

This is because the goodput measurement requires a response time

threshold, which takes response time into account. For example,

Figure 6(a) (in phase 4○) characterizes the theoretical relationship

(known as the main sequence curve) between the goodput and the

concurrency of a microservice instance. The server goodput in-

creases almost linearly as the concurrency increases until it reaches

the maximum. As the concurrency continues to increase, the server

goodput starts to decrease because the increasing response time ex-

ceeds the pre-defined threshold, and the requests with long response

times do not count into the goodput measurement. Therefore, the

maximum goodput is highly related to the response time threshold.

Second, the SCG model can handle large variations of metrics

measurement by filtering out partial “noisy” requests with long

response times. Due to the complex system dynamics, large varia-

tions of the classic concurrency-throughput pairs adopted by online

throughput models (without filtering out “noisy” requests) make

the main sequence curve extraction extremely difficult from the

scatter graph [33]. On the other hand, the goodput model can easily

localize the knee point from the scatter graph after filtering the

requests with bounded response time (see Figure 6(b) in phase 4○).

Our SCG model identifies the optimal concurrency setting based

on a statistical analysis of each microservice’s real-time goodput

and concurrency. Figure 6 shows an overview of the SCGmodel and

illustrates the four major phases in the online optimal concurrency

estimation workflow.

Critical Service Localization Phase aims to quickly and accu-

rately identify the critical path in the request call graph and further

localize the critical service for concurrency adaptation. The crit-

ical path should be the path with the longest processing time in

the request execution graph, which occupies a significant portion

of the end-to-end response time. The critical service refers to the

bottlenecked microservice on the identified critical path. Inspired

by FIRM [47], we adopt a two-step method to localize the critical

service. First, we evaluate the resource utilization of each microser-

vice. The high resource utilization indicates a candidate critical

microservice reaches its capacity, which possibly leads to request

congestion. Second, we profile the processing time of the 𝑖-th mi-

croservice 𝑃𝑇𝑠𝑖 , and the end-to-end response time of the critical

path 𝑅𝑇𝐶𝑃 , based on the arrival and departure timestamps of each

request. We further calculate the Pearson correlation coefficient [9]

of each microservice’s processing time and the end-to-end response

time of the critical path (i.e., 𝑃𝐶𝐶 (𝑃𝑇𝑠𝑖 , 𝑅𝑇𝐶𝑃)). We consider the

microservice that has the largest value as a candidate critical service

since a large value indicates that the corresponding microservice

contributes more to the end-to-end latency variation. In fact, the

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

[𝑄ଵ, 𝑇𝑃ଵ]

Service 1
Front-end

Service 2 Service N
…

Real-time Metrics

𝑡1: [𝑄ଵ, 𝐺𝑃ଵ]
𝑡2: [𝑄ଶ, 𝐺𝑃ଶ]

…
𝑡𝑛: 𝑄௡, 𝐺𝑃௡

timelineCo
nc

ur
re

nc
y

𝑄ଵ

𝑡1

Go
od

pu
t

timeline
𝐺𝑃ଵ

𝑡1

Main Sequence Curve

(a) Theoretical Model

(b) Experimental Scatter Graph

Critical Service Localization Phase

Estimation Phase

Metrics Collection Phase

RT Threshold Propagation Phase

𝑃𝑇௦೔షభ
= 𝑃𝑇௥௘௤,௦೔షభ

+ 𝑃𝑇௥௘௦,௦೔షభ

1

2

3

4

𝑅𝑇𝑇ௌ೔
< 𝑆𝐿𝐴 − ෍ 𝑃𝑇௦ೖ

௜ିଵ

௞ୀ଴

Processing Time:

RT Threshold:

Figure 6: Overview of SCG Model and its workflow for opti-
mal concurrency estimation in microservices.

critical services recommended by both steps overlap most of the

time in our experiments.

RT Threshold Propagation Phase determines the response

time threshold (i.e., deadline) for critical service goodput measure-

ment. We apply a deadline propagation algorithm [50] to the critical

path. The key idea of deadline propagation is to allow local ser-

vices to perceive the global deadline information within a critical

path and leverage the information to adjust soft resources to re-

duce latency variation. Since requests flow among microservices by

following parent-child relationship chains and each microservice

would call its child downstream microservices when handling a

parent call from its upstream microservice, we use 𝑖 to denote the

depth of service and consider the front-end service as service 0.

For any service 𝑠𝑖 in the path, we regard the parent service 𝑠𝑖−1 as
the upstream service and the child service 𝑠𝑖+1 as the downstream
service. Suppose the network latency between services is negligible

and the critical service is 𝑠𝑖 , the end-to-end response time 𝑅𝑇 is

composed of the request processing time of all upstream services

Σ𝑖−1
𝑘=0

𝑃𝑇𝑟𝑒𝑞𝑟𝑒𝑞𝑟𝑒𝑞,𝑠𝑘 , the response time of current service 𝑅𝑇𝑠𝑖 , and the

response processing time of upstream services Σ𝑖−1
𝑘=0

𝑃𝑇𝑟𝑒𝑠𝑟𝑒𝑠𝑟𝑒𝑠,𝑠𝑘 . Then

according to the SLA requirements, we have

Σ𝑖−1
𝑘=0

𝑃𝑇𝑟𝑒𝑞𝑟𝑒𝑞𝑟𝑒𝑞,𝑠𝑘 + 𝑅𝑇𝑠𝑖 + Σ𝑖−1
𝑘=0

𝑃𝑇𝑟𝑒𝑠𝑟𝑒𝑠𝑟𝑒𝑠,𝑠𝑘 ≤ 𝑆𝐿𝐴 (1)

Considering that the sum of request processing time 𝑃𝑇𝑟𝑒𝑞𝑟𝑒𝑞𝑟𝑒𝑞,𝑠𝑖 and

response processing time 𝑃𝑇𝑟𝑒𝑠𝑟𝑒𝑠𝑟𝑒𝑠,𝑠𝑖 is the total processing time of the

𝑖-th service 𝑃𝑇𝑠𝑖 , we further simplify the equation as

Σ𝑖−1
𝑘=0

𝑃𝑇𝑠𝑘 + 𝑅𝑇𝑠𝑖 ≤ 𝑆𝐿𝐴 (2)

The response time threshold (RTT) for service 𝑖 should be

𝑅𝑇𝑇𝑠𝑖 ≤ 𝑆𝐿𝐴 − Σ𝑖−1
𝑘=0

𝑃𝑇𝑠𝑘 (3)

We notice that the response time threshold of the critical service

i is only determined by the processing time of upstream services.

We record the timestamps of each message (including requests

and responses) that arrives/leaves each service, so the sum of the

processing time of all upstream services can be calculated. Then the

response time threshold of critical service will not be affected by

the inter-dependency of upstream services. Take the Cart service

as an example (see critical path 1 in Figure 5), suppose the SLA

requirement of the Cart request is 150ms, and we identify the Cart

service as the critical service. We then measure the processing time

of the front-end service (i.e., upstream of Cart) as 10ms, so the

response time threshold of the Cart service should be 140ms.

Metrics Collection Phase calculates goodput through 1) the

fine-grained measured throughput (e.g., at 100ms granularity) and

2) the deadline information of the critical service extracted in the

previous phase. We collect a series of pairs < 𝑄𝑛,𝐺𝑃𝑛 > sampled

at 100ms granularity within a short period (e.g., 3 mins) to generate

the scatter graph, shown in Figure 6(b). For a specific server concur-

rency𝑄𝑛 , we calculate the average goodput𝐺𝑃𝑛 . After that, a series

of pairs < 𝑄𝑛,𝐺𝑃𝑛 > are prepared for the next phase. We note that

we do not need to specifically configure the range of goodput and

concurrency since the real-time concurrency of each microservice

varies significantly due to dynamic workload. Due to the naturally

bursty workload, the shape of the detailed goodput-concurrency

curve of the critical service would naturally appear within a few

seconds. We notice that too-conservative concurrency settings may

affect knee point detection since insufficient concurrency cannot

fully utilize the hardware resources (e.g., CPU) to reach the maxi-

mum goodput and further blurs the knee point. Hence, we gradually

increase the allocation to find a new optimal value. Some advanced

exploration policies will be explored in our future work.

Estimation Phase finds the optimal concurrency setting

(knee point) from a discrete data set (e.g., a series of data pairs

< 𝑄𝑛,𝐺𝑃𝑛 > from the metric collection phase). We consider the

knee point of the Main Sequence Curve (see Figure 6(a)) to be the

optimal concurrency of the corresponding critical service, which

can achieve the highest goodput within the requested deadline

(from the RT threshold propagation phase). For example, Figure 7
2

shows the correlations of Cart concurrency and goodput measured

at the 100ms time granularity over the same 3-minute runtime

under a bursty workload with a 5ms and a 50ms response time

threshold, respectively. We observe that a high response time

threshold (i.e., 50ms) leads to a different knee point from that

with a low response time threshold (e.g., 5ms) since the goodput

measurement is highly sensitive to the response time threshold

selection.

3.3 Sensitivity Analysis of SCG Model
To provide a fast and accurate optimal concurrency estimation, we

apply a simple statistical approach, Kneedle [53], to detect the knee

point of the correlation between concurrency and goodput. The

knee point is defined as the local maximum of curvature, which may

occur when a curve becomes more “flat”. In practice, we need to

tune the polynomial_degree for each service to provide an accurate

estimation. Kneedle uses a smoothing spline to preserve the shape

of the original data set, so the degree of polynomial fit will affect the

accuracy of knee point estimation. A too-low polynomial degree

cannot provide a valid knee point while a too-high polynomial

2
We use Gnuplot [60] smooth function for data smoothing with the Bezier or the

cubic-splines curves

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy
 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
s/

s]

Cart Concurrency [#]

(a) Correlation between Cart concur-

rency and goodput with 5ms threshold.

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
/s

]

Cart Concurrency [#]

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

G
o
o
d
p
u
t
[r

e
q
s/

s]

Cart Concurrency [#]

(b) Correlations between Cart concur-

rency and goodput with 50ms thresh-

old.

Figure 7: The correlations between Cart concurrency and
goodput were measured at 100ms granularity during a 3-
minute experiment with different response time thresholds.
The red line is the trend line for each scatter graph.

Table 1: Optimal concurrency estimation accuracy of SCG
model with various sampling intervals for Cart, Catalogue,
and Post Storage.

Sampling Interval 10ms 20ms 50ms 100ms 200ms 500ms

MAPE [%]

Cart 16.67 15.00 13.33 5.83 10.83 15.00

Catalogue 14.67 10.67 7.99 5.33 13.33 17.33

Post Storage 19.48 18.18 17.69 12.04 13.07 15.38

degree (e.g., 20) would lead to overfitting (i.e., fitting the data noise),

thus degrading the quality of estimation. We adopt an incremental

tuning strategy to quickly identify the minimum polynomial degree

to generate an estimation that matches the profiling data. In our

case, a polynomial degree ranging from 5 to 8 can fit our profiling

data (e.g., 1-minute data) quite well with the sub-second time cost.

Besides, goodput and concurrency sampling interval (e.g., 100ms)

is another important parameter affecting the model estimation ac-

curacy. Too long a sampling interval cannot capture the transient

variation of concurrency while too short a sampling interval may

incur large variations for goodput and concurrency measurements

that degrade the knee point estimation. In addition, extensive data

points due to short sampling intervals may lead to additional CPU

and memory overhead for online estimation. We evaluate the esti-

mation accuracy of our SCG model with various sampling intervals

on three services and compare their Mean Absolute Percentage

Errors (MAPE [2]), shown in Table 1. We observe that 100ms can

achieve the best estimation accuracy with the minimum MAPE

for all three services. An automatic way to choose a proper time

interval that minimizes the MAPE for all types of microservices is

our future research.

4 SORA FRAMEWORK
In this section, we describe the design and implementation of our

framework Sora, which integrates our SCG model to work with

a hardware-only autoscaler to mitigate the large response time

fluctuations when handling bursty workloads (see Figure 8). Sora

first detects critical services based on runtime metrics (e.g., CPU

utilization, request/response timestamps) collected byMonitoring
Module and evokes hardware-only autoscaler insideReallocation
Module to arrange hardware resource scaling. Then the autoscaler

signals the Concurrency Estimator to query the optimal soft

Data transfer Actuation

Monitoring Module

Reallocation Module

Concurrency Adapter

Hardware-only AutoScaler

Concurrency Estimator

Critical Service Loc.

Deadline Propagation

Metrics Collection

EstimationSCG
Model

1

Online
Update

2

3
Concurrency Settings

Trace WarehouseJaeger Collector

Resource Utilization

Agent

Jaeger Agent

cadvisor

4

Figure 8: Sora framework for runtime adapting of optimal
concurrency settings for critical microservices.

resources allocation for corresponding services and further trig-

gers soft resource adaptation. Meanwhile, the Concurrency Estima-

tor updates the optimal soft resources settings during runtime by

extracting the fine-grained application-level metrics for the SCG

model (Section 3) to conduct online estimation. We further describe

the design of each module in the following text.

4.1 Module Design
Monitoring Module collects both system-level and performance

metrics through a monitoring agent installed in each microser-

vice instance. The system-level metrics include hardware resource

utilizations (e.g., CPU, network I/O, memory) for the hardware-

only autoscaler inside Reallocation Module since many cloud and

service providers (e.g., Amazon EC2 AutoScaling and Kubernetes

HPA/VPA) use these metrics as the scaling indicator [48]. Mean-

while, the Monitoring Module also adopts distributed tracing tools

to record individual requests’ arrival and departure timestamps

within each microservice at millisecond granularity. We implement

an OpenTracing-compliant tracing module inside each microser-

vice inspired by Jaeger [24] and Zipkin [77]. We stored the request

traces in Trace Warehouse for fine-grained performance metrics

extraction.

Concurrency Estimator is to update optimal soft resource al-

location based on our SCG model estimation during runtime. It

continuously pulls trace data from the Trace Warehouse for critical

service localization and RT threshold propagation phases inside of

SCG model asynchronously. Processing these request timestamps

can further generate fine-grained concurrency and goodput within

the time window for model estimation. Such a time window should

keep a balance between long enough to have sufficient metrics for

generating the entire trend line and short enough to keep the model

agile to the changes in workload characteristics and system condi-

tions. Based on the 100ms sampling interval and control period of

hardware-only autoscaler (e.g., default 15s in Kubernetes HPA [7]),

we configure a 60s time window setting, which can accumulate 600

data points for knee point estimation.

Reallocation Module includes a hardware-only autoscaler to

manage system hardware resources and the Concurrency Adapter

to reallocate the soft resources recommended by the Concurrency

Estimator. Once the hardware-only autoscaler is triggered, it sig-

nals the SCG Model to identify the critical services and respond

to the autoscaler for scheduling the hardware resource scaling.

The Concurrency Adapter then queries the concurrency settings

of critical services from the Concurrency Estimator and applies

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

soft resource reallocation after hardware resource scaling. The in-

dependent design of applying hardware scaling and concurrency

adaptation is to easily integrate our SCG model to the state-of-the-

art hardware-only scaling solutions (e.g., Kubernetes HPA/VPA [7]

and FIRM [47]). A unified controller can potentially be an ideal

solution for this joint optimization problem, which is subject to our

future work.

4.2 Implementation Details
Request Tracing Management. Our SCG model relies on dis-

tributed tracing to collect detailed request information to generate

fine-grained performance metrics to update optimal soft resource

allocation. However, efficient management of real-time trace data

in a large-scale microservice system is a great challenge [21, 28, 74].

To mitigate this problem, we first use a graph database, Neo4j [4],

to efficiently store and query the complex invocations of services.

Furthermore, we prepare a separate lightweight database (e.g., Mon-

goDB [3]) for each microservice to store the request/response times-

tamps of the current service, which removes the overhead of heavy

filtering and aggregation that occurs in centralized storage. Mean-

while, we isolate the resource (e.g., CPU) for the monitoring agent

with microservices in each VM to avoid interference.

Runtime Soft Resource Reallocation. Soft resources such as

threads and network connections can be dynamically reallocated

during runtime via flexible APIs provided by open-sourced software

and third-party libraries. For example, we can adjust the thread

pool size for the SpringBoot-based Cart service through remote

JMX access via Jolokia [26] and manage the database connection

pool size in the Golang-based Catalogue service through a manually

extended service via calling APIs in Golang package “database/sql”.

On the other hand, some applications tend to provide generic inter-

faces for dynamically configuring service parameters. For example,

the Apache Thrift-based Social Network employs a ClientPool class

to configure the settings of connections among services, such as the

number of connections and timeout. Other internal (or deep) soft

resources such as locks are more application-specific, and exposing

these internal soft resources to the autoscaler requires extra effort

by service developers.

5 EXPERIMENTAL EVALUATION
In this section, we first validate the generality of our SCG model on

different types of soft resources (e.g., threads and network connec-

tions) using two representative benchmark applications (i.e., Sock

Shop and Social Network) (Section 5.1). We then evaluate the effec-

tiveness of Sora in assisting the hardware-only autoscaler in stabiliz-

ing performance fluctuations under six real-world bursty workload

scenarios [17] (see Table 2). Concretely, we present that Sora in-

tegrated a state-of-the-art hardware-only autoscaler FIRM [47],

which can effectively mitigate the response time fluctuations due

to runtime system condition variations (Section 5.2 and 5.3). We

also compare Sora with the state-of-the-art concurrency-aware

concurrency adaptation framework ConScale [33], confirming that

Sora can achieve higher goodput than the classic throughput-based

model scaling management (Section 5.2). In this section, we use the

same experimental setup in Section 2.2.

 0

 400

 800

 1200

 1600

 2000

 0 5 10 15 20 25 30

(i) Model Estimation

G
o

o
d

p
u

t
[r

e
q

/s
]

Cart Concurrency [#]

 300

 600

 900

 1200

 1500

 1800

800 1000 1200 1400 1600 1800 2000

(ii) Model Validation

G
o

o
d

p
u

t
[r

e
q

s
/s

]

Workload [# Users]

Thread Pool-3
Thread Pool-5
Thread Pool-15
Thread Pool-25

(a) SCG model recommends 5 threads for Cart can achieve the highest goodput with

10ms threshold.

 0

 800

 1600

 2400

 3200

 4000

 0 5 10 15 20 25 30

(i) Model Estimation

G
o
o
d
p
u
t
[r
e
q
/s
]

Catalogue-db Concurrency [#]

 1200

 1600

 2000

 2400

 2800

 3200

2200 2400 2600 2800 3000 3200 3400

(ii) Model Validation

G
o
o
d
p
u
t
[r
e
q
s
/s
]

Workload [# Users]

DBconn Pool-10
DBconn Pool-15
DBconn Pool-20
DBconn Pool-25

(b) SCG model recommends 15 database connections for Catalogue can achieve the

highest goodput with 10ms threshold.

 0

 800

 1600

 2400

 3200

 4000

 0 5 10 15 20 25 30

(i) Model Estimation

G
o
o
d
p
u
t
[r
e
q
/s
]

PostStorage Concurrency [#]

 1600

 2000

 2400

 2800

 3200

 3600

 4000

3000 3200 3400 3600 3800 4000 4200

(ii) Model Validation

G
o
o
d
p
u
t
[r
e
q
s/
s]

Workload [# Users]

ReqsConn Pool-10
ReqsConn Pool-15
ReqsConn Pool-20
ReqsConn Pool-25

(c) SCG model recommends 10 request connections to Post Storage can achieve the

highest goodput with 15ms threshold.

Figure 9: Validating our SCG model estimation of threads in
Cart (a) and connections in Catalogue (b) andHome Timeline
(c) using realistic system configuration. These results demon-
strate that ourmodel estimation outperforms the other three
adjacent allocations in all three services.

5.1 Model Validation for Different Soft
Resources Estimation

We show three case studies on the effectiveness of our SCG model

in providing accurate optimal concurrency estimation for different

critical soft resources (e.g., threads and connections). In this set of

experiments, we first apply our SCGmodel to different services (left

column of Figure 9) to estimate the optimal concurrency settings for

different critical soft resources. We then validate the soft resource

allocations recommended by SCG through extensive experiments

(right column of Figure 9).

Case 1: Threads in Cart. Our first case study is to estimate

the thread pool size for the SpringBoot-based Cart service from

Sock Shop. To correctly obtain the optimal allocation of thread

pool in Cart service using our SCG model, we correlate the runtime

goodput and request processing concurrency in Cart to generate

a scatter graph for optimal concurrency estimation as shown in

Figure 9(a)(i). The figure shows that the SCG model recommends

5 threads as the optimal thread allocation in Cart service, which

is sufficient to fully utilize CPU and guarantee SLAs. We validate

the Cart thread pool size recommendation in Figure 9(a)(ii). In this

evaluation, we gradually increase the Cart thread pool size from 3

to 25. The figure shows that the Thread Pool-5 achieves the highest

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy

 0

 300

 600

 900

 1200

 1500

 0

 750

 1500

 2250

 3000

 3750
FIRM

(i)

(ii)

(iii)

R
e
s
p

o
n

s
e

 T
im

e
 [
m

s
]

G
o
o

d
p
u

t
[r

e
q

s
/s

]

Goodput (RTT=400ms)

Response Time

 0

 100

 200

 300

 400

 500

P
o
d
 C

P
U

 U
ti
l

(C
a
rt

)
[%

] CPU Util.

CPU Pod Limit

 0
 10
 20
 30
 40
 50

 0 120 240 360 480 600 720

R
u
n
n

in
g
 T

h
re

a
d

s

(C
a
rt

)
[#

]

Timeline [s]

Running Threads

(a) The system response time spikes appear during 269s∼412s, 480s∼610s under
the “Steep Tri Phase” workload. The goodput drops during 307s∼345s, 512s∼583s.
FIRM manages the CPU limit for the Cart service. The Pod CPU resources are under-

utilized after Cart scales up to 4-core due to the under-allocation of server threads.

 0

 300

 600

 900

 1200

 1500

 0

 750

 1500

 2250

 3000

 3750
Sora

(i)

(ii)

(iii)

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

G
o

o
d

p
u

t
[r

e
q

s
/s

]Goodput (RTT=400ms)

Response Time

 0

 100

 200

 300

 400

 500

P
o

d
 C

P
U

 U
ti
l

(C
a

rt
)

[%
] CPU Util.

CPU Pod Limit

 0
 10
 20
 30
 40
 50

 0 120 240 360 480 600 720

R
u

n
n

in
g

 T
h

re
a

d
s

(C
a

rt
)

[#
]

Timeline [s]

Running Threads

(b) Relatively stable system response time under the same workload trace in (a) with

Sora. Response time spikes appear during 269s∼412s, 480s∼590s. The goodput only
drops at 333s and 513s. The Pod CPU resources can be fully utilized after Cart scales

up to 4-core due to optimal thread pool reallocation conducted by Sora.

Figure 10: Performance comparison between FIRM and Sora under the same “Steep Tri Phase” workload. Figure 10(a) is for FIRM
and Figure 10(b) is for Sora. Our framework Sora can help FIRM stabilize response time fluctuation by re-adapting thread pool allocation to

match the bursty workload.

goodput, suggesting that either under- or over-allocation of the

thread pool could lead to inefficient usage of underlying hardware

resources.

Case 2: Database Connections in Catalogue. Our second
case study is to estimate the database connection pool size for the

Golang-based Catalogue service from Sock Shop. In Figure 9(b)(i),

our SCG model suggests that 15 database connections in the Cata-

logue service can achieve the highest goodput while the response

time threshold for goodput is 10ms. Such a recommendation is also

validated through our extensive evaluation in Figure 9(b)(ii).

Case 3: Request Connections in Post Storage. Our third case
study is to estimate the ClientPool (request connections) size for

the Apache Thrift-based Post Storage service from Social Network.

Figure 9(c)(i) shows the correlation of goodput and concurrency

in Post Storage during a 3-minute experimental period. Our SCG

model recommends 10 request connections in Post Storage as the

optimal concurrency setting with a 15ms response time thresh-

old. Our validation in Figure 9(c)(ii) confirms that such request

connection pool allocation to Post Storage is indeed the optimal

concurrency setting compared to other candidates.

5.2 Mitigating Response Time Fluctuations in
Autoscaling

We validate our design by deploying Sora, FIRM, and ConScale in

our private testbed (see Section 2.2). We implement a prototype

of Sora that uses FIRM as the underlying hardware-only manage-

ment framework. FIRM [47] provides an RL-based fine-grained

hardware resource management for microservices. ConScale [33]

is the state-of-the-art online concurrency adaptation framework,

which correlates the runtime service throughput and concurrency

for fast concurrency adaptation with autoscaling to stabilize the

system’s response time during runtime. In this evaluation, we use

the Cart service from the benchmark application Sock Shop, and

the maximum number of concurrent users for the Cart service is

Table 2: Tail response time (i.e., 95th and 99th percentile) and
average goodput comparison between FIRM and Sora under
six real-world bursty workload traces. The results show Sora

helps FIRM improve the goodput and reduce the tail response time.

Workload Trace

95th Percentile
Response Time [ms]

99th Percentile
Response Time [ms]

Goodput-400ms
[reqs/s]

FIRM / Sora FIRM / Sora FIRM / Sora

501 / 230 592 / 278 913 / 1172

500 / 247 553 / 314 1222 / 1518

663 / 303 749 / 400 589 / 730

535 / 218 642 / 358 618 / 659

551 / 319 633 / 354 705 / 870

624 / 286 687 / 321 819 / 1012

Large
Variation

Quick
Varying

Slowly
Varying

Big
Spike

Dual
Phase

Steep
Tri Phase

3500. The duration of each workload trace is 12 minutes. Our ex-

perimental results demonstrate that scaling microservices in clouds

to achieve good performance and high efficiency requires careful

runtime concurrency adaptation.

FIRM vs. Sora. Figure 10 shows the performance (e.g., goodput

and response time) comparison between FIRM and Sora under the

same “Steep Tri Phase” workload trace for the Cart service. The left

three figures (Figure 10(a)) show the FIRM case and the right figures

(Figure 10(b)) show Sora case. In this set of experiments, we initially

set the thread pool size in Cart to be 5, which is reasonable for the

2-core CPU limit scenario through pre-profiling in Section 5.1.

Sora achieves a relatively stable response time and goodput in a

12-minute experiment than that in the FIRM case (see Figure 10(a)(i)

and 10(b)(i)). For example, large response time fluctuations and

goodput drops in the FIRM case during the temporary overload

phase (307s∼345s and 512s∼583s). Taking the period 512s∼583s in
Figure 10(a) as an example, as the workload continues to increase

at 520s, we note that the number of incoming requests accumulates

and significantly affects the system performance. After the Pod

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

 0

 300

 600

 900

 1200

 1500

 0

 750

 1500

 2250

 3000

 3750
ConScale

R
e
s
p

o
n

s
e

 T
im

e
 [
m

s
]

G
o
o

d
p
u

t
[r

e
q

s
/s

]Goodput (RTT=400ms)

Response Time

 0
 100
 200
 300
 400
 500
 600

P
o
d
 C

P
U

 U
ti
l

(C
a
rt

)
[%

] CPU Util.

CPU Pod Limit

 0
 10
 20
 30
 40
 50

 0 120 240 360 480 600 720

R
u
n
n

in
g
 T

h
re

a
d

s

(C
a
rt

)
[#

]

Timeline [s]

Running Threads

(iii)

(ii)

(i)

(a) The system response time spikes appear during 180s∼260s, 500s∼570s under
the “Large Variation” workload. ConScale adapts 40 threads when Cart scales to

4-core to maximize throughput. However, such a liberal allocation leads to goodput

drops due to SLO violations.

 0

 300

 600

 900

 1200

 1500

 0

 750

 1500

 2250

 3000

 3750
Sora

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

G
o

o
d

p
u

t
[r

e
q

s
/s

]Goodput (RTT=400ms)

Response Time

 0
 100
 200
 300
 400
 500
 600

P
o

d
 C

P
U

 U
ti
l

(C
a

rt
)

[%
] CPU Util.

CPU Pod Limit

 0
 10
 20
 30
 40
 50

 0 120 240 360 480 600 720

R
u

n
n

in
g

 T
h

re
a

d
s

(C
a

rt
)

[#
]

Timeline [s]

Running Threads

(i)

(ii)

(iii)

(b) Relatively stable system response time under the same workload trace in (a)

with Sora. Sora only limits 30 threads after Cart scales to 4-core based on the SCG

model estimation with the latency constraint.

Figure 11: Performance comparison between ConScale and Sora under the same “Large Variation” workload. Figure 11(a) is for
ConScale and Figure 11(b) is for Sora. Our framework Sora outperforms ConScale with a higher goodput since Sora adopts a latency-sensitive

concurrency adaptation.

Table 3: Average goodput comparison between ConScale and
Sora under six real-world bursty workload traces. The results
show Sora outperforms ConScale to achieve higher goodput.

Goodput [reqs/s]
Large Quick Slowly Big Dual SteepTri

Variation Varying Varying Spike Phase Phase
SLA
Threshold

ConScale 985 1426 657 636 1066 934

250ms Sora 1207 1686 1007 677 1251 1222
SLA
Threshold

ConScale 1122 1712 860 669 1379 1151

500ms Sora 1283 1886 1190 711 1498 1395

CPU resources for the Cart instance scales up to 4-core, we found

that the newly added CPU core cannot efficiently process a high

volume of concurrent requests. This is because FIRM lacks the

capability of adapting the thread pool accordingly after reallocating

hardware resources, making the original optimal allocation of the

thread pool insufficient to fully utilize the hardware resources (e.g.,

CPU utilization in Figure 10(a)(ii)) as we studied in Section 5.1. For

example, the CPU utilization of Cart is about 310% even though

the CPU limit is scaled up to 4-core, leading to the Cart CPU’s low

efficiency and sub-optimal system performance. On the other hand,

Sora can easily cooperate with FIRM as the concurrency adapter

inside Reallocation Module coordinates with the hardware-only

autoscaler. It dynamically adapts the thread pool within the Cart

service to a rational level along with various vCPU allocations in

Figure 10(b)(ii).

We further compare the average goodput and tail response time

(i.e., 95th and 99th percentile) between the hardware-only scaling

frameworks and our framework Sora under other workload traces

in Table 2. Our results indicate that Sora can significantly reduce

the 95th and 99th percentile response time by 2.2× on average

than FIRM. In the meantime, Sora can assist hardware-only scaling

frameworks in achieving a goodput improvement as the goal of our

SCG model.

ConScale vs. Sora. We also validate the effectiveness of our

proposed Sora framework in mitigating response time fluctuations

compared with the state-of-the-art concurrency-aware system scal-

ing framework, ConScale. We configure both ConScale and Sora

to adopt a simple threshold-based hardware scaling solution (i.e.,

Kubernetes VPA). Table 3 shows a goodput comparison between

ConScale and Sora under the same six real-world bursty work-

load traces, demonstrating that Sora can provide higher goodput

than the ConScale framework. The goodput observed in Table 3 is

higher than that in Table 2 since Kubernetes VPA allocates much

more hardware resources to react to the bursty workloads. Take

the “Large Variation” case as an example, Figure 11(a)(i) shows the

performance comparison between ConScale and Sora under the

“Large Variation” workload trace [17]. For example, Figure 11(a)(i)

shows that ConScale with runtime concurrency adaptation still ex-

periences large response time spikes during the temporary overload

phase (e.g., periods 180s∼260s and 500s∼570s). This is because Con-
Scale uses a latency-agnostic throughput-based model (i.e., Scatter-

Concurrency-Throughput (SCT) model) without taking response

time into account, leading to the over-allocation of the thread pool

and inefficient CPU utilization as shown in Figure 11(a)(iii) and

(ii), respectively. In contrast to the SCT model, our goodput-based

SCG model takes the response time constraints of Cart into con-

sideration and recommends more rational concurrency allocations

(i.e., 30 threads), which can also fully utilize the CPU resources and

reduce SLO violations (see Figure 11(b)).

Readers maywonder whether we can simply replace the through-

put with goodput to enable ConScale for SLA-based soft resource

adaptation. The answer is no because goodput calculation requires

appropriate latency threshold selection during runtime, as shown

in Section 2.3. In a large-scale microservices-based system, the

latency requirements of critical services may change over time

due to the dynamic nature of microservices. Hence, one important

contribution of our SCG goodput model is to dynamically identify

the critical service and its runtime latency requirements and then

nicely integrate both the throughput and latency requirements into

a simple model.

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy

 0

 300

 600

 900

 1200

 1500

 0

 1000

 2000

 3000

 4000

 5000
Kubernetes HPA

Request Type
 Change

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

G
o

o
d

p
u

t
[r

e
q

s
/s

]

Goodput (RTT=400ms)

Response Time

 0
 100
 200
 300
 400
 500

P
o

d
 C

P
U

 U
ti
l
[%

]

(P
o

s
t

S
to

ra
g

e
)

CPU Util.

CPU Pod Limit

 0

 30

 60

 90

 120

 150

 0 120 240 360 480 600 720

C
o

n
n

e
c
ti
o

n
s
 [

#
]

(T
o

 P
o

s
t

S
to

ra
g

e
)

Timeline [s]

Running Connections

(i)

(ii)

(iii)

(a) The system response time spikes appear during 45s∼82s, 222s∼295s, 508s∼578s
under the “Large Variation” workload even with a threshold-based autoscaler to

scale the critical service horizontally. The static 50 connections to Post Storage

would become insufficient and cause performance degradation after the system

state drifting at 451s.

 0

 300

 600

 900

 1200

 1500

 0

 1000

 2000

 3000

 4000

 5000
Sora

Request Type
 Change

R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

G
o

o
d

p
u

t
[r

e
q

s
/s

]

Goodput (RTT=400ms)

Response Time

 0
 100
 200
 300
 400
 500

P
o

d
 C

P
U

 U
ti
l
[%

]

(P
o

s
t

S
to

ra
g

e
)

CPU Util.

CPU Pod Limit

 0

 30

 60

 90

 120

 150

 0 120 240 360 480 600 720

C
o

n
n

e
c
ti
o

n
s
 [

#
]

(T
o

 P
o

s
t

S
to

ra
g

e
)

Timeline [s]

Running Connections

(i)

(ii)

(iii)

(b) Relatively stable system response time under the same workload trace in (a)

with Sora. Sora dynamically adjusts connection pool size based on the current

parallelism of Post Storage and updates the optimal connections based on SCG

model estimation after system state drifting.

Figure 12: Performance comparison between Kubernetes HPA and Sora under the same “Large Variation” workload. Figure 12(a)
is for Kubernetes HPA and Figure 12(b) is for Sora. Our framework Sora can dynamically adjust soft resources (e.g., request connections) to

adapt to the new system state due to request type change and stabilize the response time.

5.3 Mitigating Response Time Fluctuations in
System State Drifting

In this section, we validate the effectiveness of Sora in mitigating

response time fluctuations when the microservices-based applica-

tions face the system state drifting (e.g., request type change). To

avoid the impact of vertical scaling on optimal soft resource allo-

cation, we deploy the Kubernetes Horizontal Pod Autoscaling (i.e.,

HPA) [7] in our private testbed to maintain the quality of service

during runtime. The Kubernetes Autoscaling employs a rule-based

scaling policy by monitoring resource utilization of microservice

instances (e.g., Pod CPU utilization > 80%). We conduct evaluation

experiments using the Post Storage service from the benchmark

application Social Network, and we set the maximum number of

concurrent users for the Read HomeTimeline service to 4500.

Figure 12 shows the performance comparison between Kuber-

netes HPA and Sora under the same “Large Variation” workload

trace for the Read HomeTimeline service. The left three figures

(Figure 12(a)) show the Kubernetes HPA case, and the right figures

(Figure 12(b)) show Sora case. In this set of experiments, we initially

set the request connection pool size to be 10 for each Post Storage

replica, which is the optimal concurrency setting for the 2-core

CPU limit scenario in Section 5.1. We start our experiments with all

light requests for the first 450s, then we change the request type

to heavy (see Figure 3(e) and 3(f)).

Sora achieves a relatively stable response time and goodput in a

12-minute experiment than that in the Kubernetes HPA case (see

Figure 12(a)(i) and 12(b)(i)). For example, large response time fluc-

tuations and goodput drops in the Kubernetes HPA case during the

temporary overload phase after the request type changes (45s∼82s,
222s∼295s, and 508s∼578s). Before the request type changes from
light to heavy at 451s, Figures 12(a)(i) and 12(b)(i) show that Sora

achieves lower response time and higher goodput than Kubernetes

HPA (e.g., 45s∼82s and 222s∼295s). This is because Sora can dy-

namically adjust the request connection pool size according to the

number of Post Storage replicas. In contrast, Kubernetes HPA only

adjusts the number of Post Storage replicas. The workload imbal-

ance between existing replicas and newly-added replicas would

cause a sub-optimal soft resource allocation among replicas and fur-

ther degrade performance. Furthermore, we notice a large response

time spike appears during period 508s∼578s in Figure 12(a)(i), and

the current 50 connections allocation becomes the bottleneck (see

Figure 12(a)(iii)). This is because serving heavy requests stresses

downstream database services, making the Post Storage replicas

route more requests to downstream services. The optimal connec-

tions to Post Storage should change from 10 to 30 (see Section 2.3).

On the other hand, Figure 12(b)(iii) shows that Sora dynamically

reallocates 120 connections for 4 Post Storage replicas, which can

effectively stabilize the response time fluctuations caused by the

system state drifting.

6 DISCUSSIONS
Scalability of Sora. Sora would work based on the assumption

that our monitoring infrastructure can identify the critical ser-

vices along the critical path in a large-scale system. We learn from

FIRM [47] and implement an online distributed tracing but an of-

fline data analysis on a centralized graph database, which stores the

request/response timestamps of each microservice. Specifically, our

SCG model estimates runtime service goodput and concurrency

based on the request/response timestamps stored in the dedicated

graph database, which does not add additional computational over-

head to the target runtime system. We observed the collection of

telemetry data and execution history graphs for critical service

identification leads to a maximum CPU overhead of 5% and a 50ms

computational overhead for all loads in our private testbed. How-

ever, Sora has two limitations that are subject to our future research:

First, the efficiency of the centralized graph database determines

the latency overhead of critical service extraction, which would

limit the scalability of Sora. Second, the accuracy of critical service

identification in the large-scale system would limit the effectiveness

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

of Sora. The state-of-the-art ML approach in FIRM [47] admits a

93% accuracy in a large-scale system.

Applicability of Sora. Unlike hardware resources, soft re-

sources usually have a large configuration space due to the hetero-

geneous service implementation (Section 2.1). We notice not all soft

resources are suitable for being runtime reconfigured by autoscaling

solutions. For example, exposing some internal application-specific

soft resources (e.g., locks) requires a significant engineering effort

by service providers, which may limit the applicability of autoscaler.

Hence, we target server threads and connections since they are

the most generic soft resources for heterogeneous microservices

and can directly control the request processing concurrency of

each microservice. Fortunately, most service providers explicitly

expose the tuning knobs of these two types of soft resources so that

administrators can easily reconfigure them by changing hosting

server parameters (e.g., Tomcat threads pool) or third-party library

parameters (e.g., JDBC connection pool).

7 RELATEDWORK
Previous research on stabilizing performance fluctuations to meet

strict SLOs for microservices-based applications in clouds can be

broadly divided into three categories:

Autoscaling microservices-based applications adopt tech-

niques to elasticize computing resources in clouds [27, 45, 48].

These techniques can be further categorized into four groups: (a)

threshold-based (or rule-based) [31, 42, 44], (b) statistical profiling-

based [17, 54], (c) analytical model-based [8, 13, 40, 76], and (d)

machine learning-based [23, 39, 51, 66, 71]. For example, Kuber-

netes Horizontal Pod Autoscaler [7] adopts a straightforward

rule-based approach to elasticize computing resources (e.g., CPU

and memory) based on observed resource utilization (e.g., CPU

utilization > 80%). SHOWAR [8] adopts basic ideas from control

theory and kernel-level performance metrics to determine the

optimal hardware resource allocations (e.g., CPU and memory).

FIRM [47] and Fifer [20] combine statistical profiling and machine

learning-based approaches to reprovision hardware resources to re-

duce SLO violations adaptively. However, none of these approaches

can correspondingly scale the soft resources (e.g., threads and

TCP connections) in microservices-based applications, which con-

trols the concurrent use of hardware resources and could become

significant sources of performance instability (see Section 2.3).

Analytical performance model for microservices-based ap-
plications has been widely used to estimate the microservice ca-

pacity and performance gains [22, 25, 29, 35, 41, 49, 52, 56, 59, 73].

For example, ATOM [18] leverages queueing network model to

estimate the computational optimization to maximize the system

performance with minimal CPU shares. Alibaba group [36] con-

ducts in-depth anatomy of microservices call-dependency based

on a production trace analysis to optimize microservice designs for

SLOs. MicroRCA [67] can locate root causes of performance issues

in microservices by correlating application performance symptoms

with corresponding system resource utilization. However, these

approaches require significant human effort and expert knowledge

to conduct performance tuning. Their work inspires us to improve

our work to be more agile when handling runtime system condition

variations.

Experimental software reconfiguration approaches for

microservices-based applications have been studied extensively [34,

38, 43, 68–70, 72]. For example, BestConfig [75] automates the con-

figuration tuning for general systems by combining the divide-and-

diverge sampling method and the recursive bound-and-search al-

gorithm. ConScale [33] utilizes a Scatter-Concurrency-Throughput

(SCT) model based on statistical correlations between each server’s

throughput and concurrency to quickly adapt the optimal soft

resource configurations of key servers during the system scaling

process. Iter8 [61] adopts online Bayesian learning and multi-

armed bandit algorithms to enable microservices-based applications

tailored for SLOs in the cloud. Our work complements their work by

integrating an online Scatter-Concurrency-Goodput (SCG) Model

with more fine-grained runtime contextual information, which can

capture each subtle change in system conditions and better adapt

soft resource allocations for microservices-based applications.

8 CONCLUSION
We propose Sora, an online concurrency adapting framework that

integrates latency constraints and fast concurrency adaptation

for critical microservices and works together with other popu-

lar hardware-only autoscalers. Sora uses SCG, an online goodput-

based model which collects fine-grained metrics extracted from

various microservice instances to quickly determine an optimal

soft resource setting for critical microservices during runtime. Our

experiments using six real-world bursty workloads show that Sora

can effectively reduce the tail response time of our microservices

benchmark application at the 99th percentile by an average of 2.5×
compared to the FIRM, and 1.5× to the state-of-the-art concurrency-

aware system scaling strategy ConScale. Overall, Sora enables fast

mitigation of user-perceived response time fluctuations by combin-

ing efficient hardware and soft resource provisioning, contributing

to both high resource efficiency and high performance of modern

cloud requirements.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd Dr. Arpan

Gujarati for their feedback on improving this paper. This research

has been partially funded by National Science Foundation by CNS

(2000681), CNS (2245827), CNS (2212256), and contracts from Fujitsu

Limited. Any opinions, findings, and conclusions are those of the

author(s) and do not necessarily reflect the views of the National

Science Foundation or other funding agencies mentioned above.

REFERENCES
[1] Decomposing twitter: Adventures in service-oriented architecture. https://

www.infoq.com/presentations/twitter-soa/.

[2] Mean absolute percentage error. https://en.wikipedia.org/wiki/

Mean_absolute_percentage_error.

[3] mongodb. https://www.mongodb.com.

[4] Neo4j:native graph database. https://github.com/neo4j/neo4j.

[5] Tony mauro. adopting microservices at netflix: Lessons for architectural de-

sign. https://www.nginx.com/blog/microservices-at-netflix-architectural-best-

practices/.

[6] Sock shop microservice demo application. https://microservices-demo.github.io/,

2016.

[7] Kubernetes horizontal pod auto-scaling. https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/, 2019.

[8] Baarzi, A. F., and Kesidis, G. SHOWAR: Right-sizing and efficient scheduling

of microservices. In SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA,

https://www.infoq.com/presentations/twitter-soa/
https://www.infoq.com/presentations/twitter-soa/
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://www.mongodb.com
https://github.com/neo4j/neo4j
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://microservices-demo.github.io/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Sora: A Latency Sensitive Approach for Microservice Soft Resource Adaptation Middleware ’23, December 11–15, 2023, Bologna, Italy

USA, November 1 - 4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM,

pp. 427–441.

[9] Benesty, J., Chen, J., Huang, Y., and Cohen, I. Pearson correlation coefficient.

In Noise reduction in speech processing. Springer, 2009, pp. 1–4.
[10] Chiba, T., Nakazawa, R., Horii, H., Suneja, S., and Seelam, S. Confadvisor: A

performance-centric configuration tuning framework for containers on kuber-

netes. In 2019 IEEE International Conference on Cloud Engineering (IC2E) (2019),
IEEE, pp. 168–178.

[11] Consortium, O. Rubbos: Bulletin board benchmark. http://jmob.ow2.org/

rubbos.html, 2005.

[12] container, L. Infrastructure for container projects. https://linuxcontainers.org/.

[13] Cusack, G., Nazari, M., Goodarzy, S., Hunhoff, E., Oberai, P., Keller, E.,

Rozner, E., and Han, R. Escra: Event-driven, Sub-second Container Resource

Allocation. In 2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS) (July 2022), pp. 313–324.

[14] Docker. Docker. https://www.docker.com/.

[15] Einav, Y. Amazon found every 100ms of latency cost them 1

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-

cost-them-1-in-sales/.

[16] Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A.,

Hu, J., Ritchken, B., Jackson, B., et al. An open-source benchmark suite for

microservices and their hardware-software implications for cloud & edge systems.

In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (2019), pp. 3–18.

[17] Gandhi, A., Harchol-Balter, M., Raghunathan, R., and Kozuch, M. A. Au-

toscale: Dynamic, robust capacity management for multi-tier data centers. ACM
Transactions on Computer Systems (TOCS) 30, 4 (2012), 14.

[18] Gias, A. U., Casale, G., and Woodside, M. Atom: Model-driven autoscaling

for microservices. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (2019), IEEE, pp. 1994–2004.

[19] golang. Go official website. https://golang.org/.

[20] Gunasekaran, J. R., Thinakaran, P., Nachiappan, N. C., Kandemir, M. T., and

Das, C. R. Fifer: Tackling resource underutilization in the serverless era. In

Proceedings of the 21st International Middleware Conference (New York, NY, USA,

2020), Middleware ’20, Association for Computing Machinery, p. 280–295.

[21] Guo, X., Peng, X., Wang, H., Li, W., Jiang, H., Ding, D., Xie, T., and Su, L.

Graph-based trace analysis for microservice architecture understanding and

problem diagnosis. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2020), pp. 1387–1397.

[22] Huang, L., and Zhu, T. Tprof: Performance profiling via structural aggregation

and automated analysis of distributed systems traces. In SoCC ’21: ACM Sym-
posium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino,
G. Koutrika, and R. Netravali, Eds., ACM, pp. 76–91.

[23] Hwang, C., Kim, T., Kim, S., Shin, J., and Park, K. Elastic resource sharing for

distributed deep learning. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21) (2021), pp. 721–739.

[24] Jaeger. Jaeger: open source, end-to-end distributed tracing. https://

www.jaegertracing.io/.

[25] Jindal, A., Podolskiy, V., and Gerndt, M. Performance modeling for cloud

microservice applications. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (2019), pp. 25–32.

[26] Jolokia. Jolokia official website. https://jolokia.org/.

[27] Jyothi, S. A., Curino, C., Menache, I., Narayanamurthy, S. M., Tumanov, A.,

Yaniv, J., Mavlyutov, R., Goiri, I., Krishnan, S., Kulkarni, J., et al. Morpheus:

Towards automated {SLOs} for enterprise clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16) (2016), pp. 117–134.

[28] Kaldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W., O’Neill, J., Ong, K. W.,

Schaller, B., Shan, P., Viscomi, B., et al. Canopy: An end-to-end performance

tracing and analysis system. In Proceedings of the 26th symposium on operating
systems principles (2017), pp. 34–50.

[29] Kannan, R. S., Subramanian, L., Raju, A., Ahn, J., Mars, J., and Tang, L. Grand-

SLAm: Guaranteeing SLAs for Jobs in Microservices Execution Frameworks. In

Proceedings of the Fourteenth EuroSys Conference 2019 (New York, NY, USA, Mar.

2019), EuroSys ’19, Association for Computing Machinery, pp. 1–16.

[30] Kubernetes. Kubernetes. https://kubernetes.io/.

[31] Kwan, A., Wong, J., Jacobsen, H.-A., and Muthusamy, V. Hyscale: Hybrid and

network scaling of dockerized microservices in cloud data centres. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS) (2019),
pp. 80–90.

[32] Liu, H., Zhang, J., Shan, H., Li, M., Chen, Y., He, X., and Li, X. Jcallgraph: tracing

microservices in very large scale container cloud platforms. In International
Conference on Cloud Computing (2019), Springer, pp. 287–302.

[33] Liu, J., Zhang, S., Wang, Q., and Wei, J. Mitigating large response time fluctu-

ations through fast concurrency adapting in clouds. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2020), IEEE, pp. 368–377.

[34] Liu, J., Zhang, S., Wang, Q., and Wei, J. Coordinating fast concurrency adapting

with autoscaling for slo-oriented web applications. IEEE Transactions on Parallel

and Distributed Systems 33, 12 (2022), 3349–3362.
[35] Liu, L., Wang, H., Wang, A., Xiao, M., Cheng, Y., and Chen, S. Mind the gap:

Broken promises of CPU reservations in containerized multi-tenant clouds. In

SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 -
4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 243–257.

[36] Luo, S., Xu, H., Lu, C., Ye, K., Xu, G., Zhang, L., Ding, Y., He, J., and Xu, C.

Characterizingmicroservice dependency and performance: Alibaba trace analysis.

In SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1
- 4, 2021, C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 412–426.

[37] Mahgoub, A., Wood, P., Ganesh, S., Mitra, S., Gerlach, W., Harrison, T.,

Meyer, F., Grama, A., Bagchi, S., and Chaterji, S. Rafiki: a middleware for

parameter tuning of nosql datastores for dynamic metagenomics workloads. In

Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference (2017), pp. 28–40.
[38] Maji, A. K., Mitra, S., Zhou, B., Bagchi, S., and Verma, A. Mitigating interfer-

ence in cloud services by middleware reconfiguration. In Proceedings of the 15th
International Middleware Conference (2014), pp. 277–288.

[39] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. Resource management

with deep reinforcement learning. In Proceedings of the 15th ACM workshop on
hot topics in networks (2016), pp. 50–56.

[40] Mirhosseini, A., Elnikety, S., and Wenisch, T. F. Parslo: A gradient descent-

based approach for near-optimal partial SLO allotment in microservices. In SoCC
’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 442–457.

[41] Mirhosseini, A., West, B. L., Blake, G. W., and Wenisch, T. F. Express-lane

scheduling and multithreading to minimize the tail latency of microservices. In

2019 IEEE International Conference on Autonomic Computing (ICAC) (2019), IEEE,
pp. 194–199.

[42] Mittal, V., Qi, S., Bhattacharya, R., Lyu, X., Li, J., Kulkarni, S. G., Li, D.,

Hwang, J., Ramakrishnan, K. K., and Wood, T. Mu: An efficient, fair and

responsive serverless framework for resource-constrained edge clouds. In SoCC
’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
C. Curino, G. Koutrika, and R. Netravali, Eds., ACM, pp. 168–181.

[43] Mvondo, D., Barbalace, A., Tchana, A., and Muller, G. Tell me when you

are sleepy and what may wake you up! In SoCC ’21: ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino, G. Koutrika, and
R. Netravali, Eds., ACM, pp. 562–569.

[44] Netto, M. A., Cardonha, C., Cunha, R. L., and Assuncao, M. D. Evaluating

auto-scaling strategies for cloud computing environments. In 2014 IEEE 22nd
International Symposium on Modelling, Analysis & Simulation of Computer and
Telecommunication Systems (2014), IEEE, pp. 187–196.

[45] Ousterhout, A., Fried, J., Behrens, J., Belay, A., and Balakrishnan, H.

Shenango: Achieving high CPU efficiency for latency-sensitive datacenter work-

loads. In 16th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 19) (2019), pp. 361–378.

[46] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., and Josuttis, N.

Microservices in practice, part 1: Reality check and service design. IEEE Annals
of the History of Computing 34, 01 (2017), 91–98.

[47] Qiu, H., Banerjee, S. S., Jha, S., Kalbarczyk, Z. T., and Iyer, R. K. {FIRM}:
An intelligent fine-grained resource management framework for SLO-oriented

microservices. In 14th {USENIX} Symposium on Operating Systems Design and
Implementation (OSDI 20) (2020), pp. 805–825.

[48] Qu, C., Calheiros, R. N., and Buyya, R. Auto-scaling web applications in clouds:

A taxonomy and survey. ACM Computing Surveys (CSUR) 51, 4 (2018), 73.
[49] Rahman, J., and Lama, P. Predicting the end-to-end tail latency of container-

ized microservices in the cloud. In 2019 IEEE International Conference on Cloud
Engineering (IC2E) (2019), IEEE, pp. 200–210.

[50] Ren, R., Ma, J., Sui, X., and Bao, Y. D2p: a distributed deadline propagation

approach to tolerate long-tail latency in datacenters. In Proceedings of 5th Asia-
Pacific Workshop on Systems (2014), pp. 1–6.

[51] Rzadca, K., Findeisen, P., Swiderski, J., Zych, P., Broniek, P., Kusmierek,

J., Nowak, P., Strack, B., Witusowski, P., Hand, S., and Wilkes, J. Autopi-

lot: Workload autoscaling at Google. In Proceedings of the Fifteenth European
Conference on Computer Systems (New York, NY, USA, Apr. 2020), EuroSys ’20,

Association for Computing Machinery, pp. 1–16.

[52] Samanta, A., Jiao, L., Mühlhäuser, M., and Wang, L. Incentivizing Microser-

vices for Online Resource Sharing in Edge Clouds. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 420–430.

[53] Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B. Finding a" kneedle" in

a haystack: Detecting knee points in system behavior. In 2011 31st international
conference on distributed computing systems workshops (2011), IEEE, pp. 166–171.

[54] Sharma, U., Shenoy, P., Sahu, S., and Shaikh, A. A cost-aware elasticity

provisioning system for the cloud. In 2011 31st International Conference on
Distributed Computing Systems (2011), IEEE, pp. 559–570.

[55] Somashekar, G., and Gandhi, A. Towards optimal configuration of microser-

vices. In Proceedings of the 1st Workshop on Machine Learning and Systems (2021),
pp. 7–14.

[56] Song, W., Xiao, Z., Chen, Q., and Luo, H. Adaptive Resource Provisioning for

the Cloud Using Online Bin Packing. 2647–2660.

http://jmob.ow2.org/rubbos.html
http://jmob.ow2.org/rubbos.html
https://linuxcontainers.org/
https://www.docker.com/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://golang.org/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://jolokia.org/
https://kubernetes.io/

Middleware ’23, December 11–15, 2023, Bologna, Italy Jianshu Liu, Qingyang Wang, Shungeng Zhang, Liting Hu, and Dilma Da Silva

[57] Spring. Spring boot overview. https://spring.io/projects/spring-boot.

[58] Sriraman, A., and Wenisch, T. F. 𝜇tune: Auto-tuned threading for {OLDI}
microservices. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18) (2018), pp. 177–194.

[59] Tennage, P., Perera, S., Jayasinghe, M., and Jayasena, S. An analysis of holis-

tic tail latency behaviors of java microservices. In 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th In-
ternational Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS) (2019), IEEE, pp. 697–705.

[60] Thomas, W., and Colin, K. gnuplot homepage. http://www.gnuplot.info/, 2019.

[61] Toslali, M., Parthasarathy, S., Oliveira, F., Huang, H., and Coskun, A. K.

Iter8: Online experimentation in the cloud. In SoCC ’21: ACM Symposium on
Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, C. Curino, G. Koutrika,
and R. Netravali, Eds., ACM, pp. 289–304.

[62] Virtuozzo. Open source container-based virtualization for linux. https:

//openvz.org/.

[63] VMware. Vmware esxi: The purpose-built bare metal hypervisor. https://

www.vmware.com/products/esxi-and-esx.html, 2019.

[64] Wang, Q., Chen, H., Zhang, S., Hu, L., and Palanisamy, B. Integrating con-

currency control in n-tier application scaling management in the cloud. IEEE
Transactions on Parallel and Distributed Systems 30, 4 (2018), 855–869.

[65] Wang, Q., Zhang, S., Kanemasa, Y., Pu, C., Palanisamy, B., Harada, L., and

Kawaba, M. Optimizing n-tier application scalability in the cloud: A study of soft

resource allocation. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS) 4, 2 (2019), 1–27.

[66] Wang, Z., Zhu, S., Li, J., Jiang, W., Ramakrishnan, K. K., Zheng, Y., Yan, M.,

Zhang, X., and Liu, A. X. DeepScaling: Microservices autoscaling for stable CPU

utilization in large scale cloud systems. In Proceedings of the 13th Symposium
on Cloud Computing (New York, NY, USA, Nov. 2022), SoCC ’22, Association for

Computing Machinery, pp. 16–30.

[67] Wu, L., Tordsson, J., Elmroth, E., and Kao, O. Microrca: Root cause localization

of performance issues in microservices. In NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium (2020), IEEE, pp. 1–9.

[68] Xiao, Z., Song, W., and Chen, Q. Dynamic Resource Allocation Using Virtual

Machines for Cloud Computing Environment. 1107–1117.

[69] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S. Early

detection of configuration errors to reduce failure damage. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016),
pp. 619–634.

[70] Xu, T., Zhang, J., Huang, P., Zheng, J., Sheng, T., Yuan, D., Zhou, Y., and

Pasupathy, S. Do not blame users for misconfigurations. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles (2013), pp. 244–
259.

[71] Yang, Z., Nguyen, P., Jin, H., and Nahrstedt, K. Miras: Model-based reinforce-

ment learning for microservice resource allocation over scientific workflows. In

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)
(2019), IEEE, pp. 122–132.

[72] Zhang, B., Van Aken, D., Wang, J., Dai, T., Jiang, S., Lao, J., Sheng, S., Pavlo,

A., and Gordon, G. J. A demonstration of the ottertune automatic database

management system tuning service. Proceedings of the VLDB Endowment 11, 12
(2018), 1910–1913.

[73] Zhang, S., Wang, Q., Kanemasa, Y., Liu, J., and Pu, C. Doublefacead: A new data-

store driver architecture to optimize fanout query performance. In Proceedings
of the 21st International Middleware Conference (2020), pp. 430–444.

[74] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., Xiang, Q., and He, C. Latent

error prediction and fault localization for microservice applications by learning

from system trace logs. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (2019), pp. 683–694.

[75] Zhu, Y., Liu, J., Guo,M., Bao, Y., Ma,W., Liu, Z., Song, K., and Yang, Y. Bestconfig:

tapping the performance potential of systems via automatic configuration tuning.

In Proceedings of the 2017 Symposium on Cloud Computing (2017), pp. 338–350.

[76] Zhu, Z., Bi, J., Yuan, H., and Chen, Y. Sla based dynamic virtualized resources

provisioning for shared cloud data centers. In 2011 IEEE 4th International Confer-
ence on Cloud Computing (2011), IEEE, pp. 630–637.

[77] Zipkin. Zipkin: A distributed system. https://zipkin.io/.

https://spring.io/projects/spring-boot
http://www.gnuplot.info/
https://openvz.org/
https://openvz.org/
https://www.vmware.com/products/esxi-and-esx.html
https://www.vmware.com/products/esxi-and-esx.html
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Soft Resources in Microservices
	2.2 Experimental Setup
	2.3 Shifting of Optimal Soft Resource Allocation during Runtime

	3 Scatter-Concurrency-Goodput Model
	3.1 Limitations of Existing Online Models
	3.2 Model Description
	3.3 Sensitivity Analysis of SCG Model

	4 Sora Framework
	4.1 Module Design
	4.2 Implementation Details

	5 Experimental Evaluation
	5.1 Model Validation for Different Soft Resources Estimation
	5.2 Mitigating Response Time Fluctuations in Autoscaling
	5.3 Mitigating Response Time Fluctuations in System State Drifting

	6 Discussions
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

