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ABSTRACT
Modern web-facing applications such as e-commerce com-

prise tens or hundreds of distributed and loosely coupled

microservices that promise to facilitate high scalability.

While hardware resource scaling approaches [28] have been

proposed to address response time fluctuations in critical

microservices, little attention has been given to the scaling

of soft resources (e.g., threads or database connections),

which control hardware resource concurrency. This paper

demonstrates that optimal soft resource allocation for critical

microservices significantly impacts overall system perfor-

mance, particularly response time. This suggests the need

for fast and intelligent runtime reallocation of soft resources

as part of microservices scaling management. We introduce

𝜇ConAdapter, an intelligent and efficient framework for

managing concurrency adaptation. It quickly identifies opti-

mal soft resource allocations for critical microservices and

adjusts them to mitigate violations of service-level objectives

(SLOs). 𝜇ConAdapter utilizes fine-grained online monitor-

ing metrics from both the system and application levels

and a Deep Q-Network (DQN) to quickly and adaptively

provide optimal concurrency settings for critical microser-

vices. Using six realistic bursty workload traces and two

representative microservices-based benchmarks (SockShop
and SocialNetwork), our experimental results show that

𝜇ConAdapter can effectively mitigate large response time

fluctuation and reduce the tail latency at the 99th percentile

by 3× on average when compared to the hardware-only

scaling strategies like Kubernetes Autoscaling and FIRM [28],

and by 1.6× to the state-of-the-art concurrency-aware sys-

tem scaling strategy like ConScale [21].
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1 INTRODUCTION
Modern web-facing applications have widely adopted mi-

croservices due to their superior scalability. Industry giants

such as Amazon [2], Twitter [1], and Netflix [3] have mi-

grated their core systems and architectures from traditional

monolithic designs to microservices. Microservices are de-

signed to efficiently handle naturally bursty workloads while

meeting stringent Service-Level Objectives (SLOs), such as

maintaining bounded response times. For instance, Ama-
zon.com reported that every additional 100 milliseconds in

page loading can lead to a 1% loss in sales [7]. An important

feature of the microservices-based architecture is that the

scalable fine-grained component microservices [26] can pro-

vide greater performance control by adding system resources

(e.g., vCPU) only to the sections that need extra capacity.

Existing approaches have made notable efforts in hard-

ware resource management to handle the variance in the

critical path of microservices, such as FIRM [28], which fo-

cuses on the shared low-level resource contention. However,

little attention has been given to scaling soft resources (e.g.,

threads or database connections) that control hardware re-

source concurrency. Previous studies [21, 34] revealed that

the mismatch between the soft and hardware resources is an

important factor contributing to SLO violations. For example,

Figure 1 shows a microservice application with FIRM [28]

encounters unexpected response time spikes over the scaling

phases. This is caused by the over-allocation of the thread

https://doi.org/10.1145/3620678.3624980
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Figure 1: Large latency spikes from thread pool over-
allocation. 𝜇ConAdapter complements FIRM [28] with
intelligent concurrency adaptations during resource
scaling and microservice updates.

pool inside the critical microservices. Recent studies [20, 21]

introduced the concurrency-aware system scaling solutions

(e.g., ConScale) that employ online statistical models to ef-

ficiently adjust soft resource allocations of critical services

during system scaling. However, the dynamic nature of mi-

croservice environments, due to frequent runtime changes

(e.g., rolling updates of microservices in Figure 1), may cause

recurring human efforts for offlinemodel reconstruction. The

online models face limitations in estimating short-term opti-

mal allocations based on past observations, which may lead

to a degraded performance caused by an unstable adaptation

process, as discussed in Section 3.1.

In this paper, we propose 𝜇ConAdapter, an online Rein-

forcement Learning (RL)-based concurrency adaptation man-

agement framework designed to quickly recommend and

re-allocate soft resources (e.g., server threads and database

connections) for critical microservices to mitigate SLO viola-

tions. The RL approach models the concurrency adaptation

as a Markov decision process and recommends long-term

optimal actions with a tight feedback loop. In particular,

we use Deep Q-Network (DQN), a value-based method ef-

fective in solving problems with discrete action spaces, to

learn directly from the actual workload. 𝜇ConAdapter lever-

ages fine-grained online monitoring metrics (e.g., resource

utilization, request rate, throughput, response time, and con-

currency) to describe the runtime system state and workload

characteristics and feeds them to DQN for optimal soft re-

sources estimation. This is primarily because soft resources,

such as server threads and database connections, control the

sharing of hardware resources in microservices through con-

currency. A conservative allocation (e.g., too small a thread

pool) often creates software bottlenecks that limit overall

system throughput. In contrast, a liberal allocation often

wastes hardware resources such as CPU and memory. Fig-

ure 1 demonstrates the need for our 𝜇ConAdapter. It enables

fast and intelligent runtime adaptation of the thread pool

size for a critical microservice when scaling the SockShop [4]
microservices benchmark application to achieve better per-

formance.

The first contribution of the paper is an empirical study

based on the microservices benchmark, SockShop [4]). This

study confirms that optimal concurrency settings can sig-

nificantly vary under different system state changes in a

microservices-based web application. For example, we show

that the optimal server thread pool size for one of the mi-

croservices (e.g., Cart service) exhibits a superlinear increase
from 5 to 30 after the CPU limit scales up from a 2-core to

a 4-core configuration (see Figure 3(a)). We also observed

that a sub-optimal thread allocation, given the same CPU

limit, could degrade the maximum achievable throughput of

a Cart service instance by up to 50% (see Figure 3(a)).

Our second contribution is a Reinforcement Learning (RL)-

based approach that enables fast and smart runtime concur-

rency adaptation for microservices in clouds. We feed the

runtime system and workload information (e.g., fine-grained

system and application-level metrics) to a Deep Q-Network

model, which makes frequent concurrency adaptation deci-

sions (Section 3). We further propose a mechanism to speed

up the training process of our DQN model through histori-

cal fine-grained sampling metrics. By continuously learning

from the rewards of various concurrency settings, the RL-

based model can avoid the low-efficiency problem for model

convergence and quickly adapt to optimal concurrency.

The third contribution is the design and implementation

of the 𝜇ConAdapter framework, which leverages our RL-

based agent to coordinate the provisioning of both hardware

and soft resources in microservices (Section 4). Through

extensive experiments using six realistic bursty workload

traces [9] on two representative microservices-based bench-

mark applications (i.e., SockShop and SocialNetwork), we

demonstrate that 𝜇ConAdapter can effectively alleviate large

response time fluctuations and reduce the 99th percentile

latencies by 3× on average. This is compared to hardware-

only scaling strategies like Kubernetes Autoscaling [16] and

FIRM [28], and it offers 1.6× improvement over the state-of-

the-art concurrency-aware scaling, ConScale [21].

The rest of the paper is organized as follows. Section 2

presents experimental results showing that sub-optimal soft

resource allocation leads to significant performance degrada-

tion. Section 3 introduces our RL-based model. Section 4 il-

lustrates the design and implementation of our 𝜇ConAdapter

framework. Section 5 shows the evaluation under six realistic

workloads. Section 6 and Section 7 summarize the limitations

and related work, and Section 8 concludes the paper.
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Figure 2: Service dependency graphs of SockShop and
SocialNetwork benchmark applications.

2 BACKGROUND AND MOTIVATION
2.1 Soft Resource Adaptation in

Microservice
Soft Resources. Unlike well-defined hardware resources

(such as CPU, memory, disk, and network) in performance

evaluation studies, soft resources refer to system software

components that consume hardware resources. For example,

threads consume CPU and memory while TCP connections

multiplex network I/O. For an Internet server, threads and

network connections (e.g., database connections or AJP con-

nections, typically on top of TCP) are the twomost important

soft resources because they control the request processing

concurrency level and increase the hardware utilization effi-

ciency through the sharing of hardware resources.

Runtime Soft Resource Reallocation. Many service

providers explicitly expose the tuning knobs of middleware-

level soft resources (e.g., server threads and connections)

that can be easily reconfigured by changing hosting server

parameters (e.g., Tomcat thread pool) or third-party library

parameters (e.g., JDBC connection pool). For example, we

can adjust the thread pool size for the SpringBoot-based

service through remote JMX access via Jolokia and manage

the database connection pool size in the Golang-based ser-

vice through a manually extended service by calling APIs

in the Golang package “database/sql”. The cost of changing

configurations can be low, with many service implemen-

tations offering runtime-resizable APIs for a graceful exit.

However, there may exist other internal application-specific

soft resources (e.g., locks). Tuning such internal soft re-

sources requires additional engineering effort from cluster

orchestration, which is beyond this paper’s scope.

2.2 Experimental Setup
We adopt two open-sourced microservices benchmarks in

Figure 2: (i) SockShop [4], and (ii) SocialNetwork from the

DeathStarBench [8] benchmark. SockShop is an e-commerce

website with 11 unique microservices, which allows cus-

tomers to navigate and purchase different socks. SocialNet-

work (with 36 unique microservices) implements a broadcast-

style social network with uni-directional follow relationships

whereby users can publish and read social media posts. We

use the RUBBoS workload generator [6] to simulate a num-

ber of concurrent users accessing the target microservices,

where the request rate follows a Poisson distribution.

We conducted experiments in our private VMware ESXi

cluster, which consists of 6 bare-metal servers equipped with

two Intel Xeon E5-2603v3 processors and 16GB of RAM. We

deployed 18 VMs in the cluster, and each VM was configured

with 4 vCPUs, 4GB RAM, and 30GB disk space. Furthermore,

we set up a Kubernetes cluster for container orchestration

and deployed containers uniformly among VMs. In this paper,

we use the terms “pod” and “container” interchangeably

since we use a standard one-container-per-pod model. Each

container runs one component microservice. In the following

motivation experiments, we evaluate two representative soft

resources from SockShop: the thread pool in a SpringBoot-

based service Cart and the database connection pool in a

Golang-based service Catalogue.

2.3 Performance Degradation with
Sub-Optimal Concurrency Settings

In this section, we show our empirical study on three runtime

system condition changes that affect the optimal concurrency

setting in a microservices-based web application.

1) Hardware Resource Scaling. The vertical scaling (e.g.,
adding or removing # of CPU cores) would affect the optimal

concurrency setting of a microservice instance. Figure 3(a)

shows that the optimal thread pool allocation shifts from 5 to

30 when the CPU limit for Cart service scales up from 2-core

to 4-core. This is because the original optimal concurrency

setting (i.e., five server threads) becomes an under-allocation

and cannot fully utilize four CPU cores after the system scal-

ing. We have observed consistent experimental results about

the shifts of optimal connection pool allocation in Catalogue
service as the CPU limit scales up, as shown in Figure 3(d).

These experimental results indicate that hardware resource

scaling would cause the original optimal concurrency setting

to be sub-optimal, resulting in performance degradation.

2) Upgrading of Microservices Business Logic. Fur-
thermore, we explore the impact of the upgrades to the busi-

ness logic for serving the same type of requests of a microser-

vice instance. For example, we update Cart and Catalogue
to employ an optimized business logic with fewer compu-

tations (i.e., less service time). Figure 3(b) shows that the

optimal thread pool allocation increases from 10 to 30 after

applying the optimized business logic for Cart service. This
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(a) Optimal thread pool allocation changes
from 5 to 30 when Cart CPU limit scales up
from 2-core to 4-core.

(b) Optimal thread pool allocation changes
from 10 to 30 when Cart service updates
with lighter business logic.

(c) Optimal thread pool allocation changes
from 5 to 10 when dataset in Cart-db service
enlarges.

(d) Optimal database connection pool allo-
cation changes from 5 to 15 when Catalogue
CPU limit scales up from 1-core to 2-core.

(e) Optimal database connection pool alloca- 
tion changes from 10 to 15 when Catalogue
service updates with lighter business logic.

(f) Optimal database connection pool allo-
cation changes from 15 to 10 when dataset
in Catalogue-db service enlarges.

Figure 3: Performance variation at increasing soft resource allocation (e.g., thread pool and database connection
pool) for Cart and Catalogue service in Sock Shop benchmark application. Figures (a) and (d) show that scaling up
# of CPU cores could change the optimal soft resource allocation on microservices, Figures (b) and (e) show the
case of changing the business logic of microservices, and Figures (c) and (f) show system state variation case.

is because the degrees of computation for the business logic

for serving the same type of requests are proportional to the

CPU resource consumption – the fewer computations for

the business logic, the less CPU resource consumed. Thus,

the original optimal concurrency setting (i.e., ten threads)

becomes an under-allocation and cannot fully utilize all CPU

resources after applying the optimized business logic. Con-

sistent results are observed in Figure 3(e) for Catalogue.
3) Drifting of System State. The system state drift also

affects the optimal concurrency setting of a component mi-

croservice by affecting the degrees of computation for the

business logic for serving the same type of requests. For ex-

ample, the system state of the backend microservices could

drift over time due to continuous dataset updates, which

leads to variations of the service time of requests in up-

stream microservices accordingly. In this set of experiments,

we initially employed the original dataset for Cart-db and

Catalogue-db services and then manually enlarged the origi-

nal dataset. Figure 3(c) shows that the optimal thread pool

in Cart service increases from 5 to 10 after we enlarge the

dataset in Cart-db service. An interesting observation is that

Figure 3(f) shows the opposite results, where the optimal

database connection pool in Catalogue decreases from 15 to

10 after enlarging the dataset in Catalogue-db. Such experi-

mental results show that the effect of system state drift on

different microservices can be heterogeneous due to complex

dependencies among these microservices.

Our three empirical observations demonstrate that the

runtime system condition changes have a significant im-

pact on the optimal concurrency in different microservices.

These runtime system condition changes, especially the hard-

ware resource scaling, are common for microservices-based

web applications in cloud environments due to the naturally

bursty workload. Hence, service providers need an online

approach to quickly and accurately identify the optimal con-

currency settings according to various system conditions.

3 RL-BASED MODEL FOR OPTIMAL
CONCURRENCY ADAPTATION

This section proposes a reinforcement learning-based model

for quickly adapting optimal concurrency settings for critical

microservice instances, which can address the limitations of

existing statistical approaches for online concurrency adapta-

tion (Section 3.1). Our model collects fine-grained contextual

metrics (e.g., system conditions) and inputs them into a Deep-

Q-Network (DQN), which recommends the optimal concur-

rency setting to achieve the highest reward (Section 3.2). We
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Figure 4: An online statistical model estimates optimal
concurrency setting based on relationships between
real-time service throughput and concurrency.

further introduce a mechanism to accelerate the training pro-

cess of our DQN-based model through the use of fine-grained

sampling metrics (Section 3.3).

3.1 Statistical Model Limitations
Existing approaches for determining optimal concurrency

mainly adopt statistical methods involving static offline mod-

els [12, 34] and dynamic online models [21, 39].

Static offline models identify optimal concurrency settings

using a brute-force search to model the relationships be-

tween performance metrics based on queuing theory. For ex-

ample, Figure 4(a) characterizes the theoretical relationship

(main sequence curve) between a microservice instance’s

throughput and concurrency based on the classic Utiliza-

tion Law [17]. The process of training model parameters is

very time-consuming since we need to tune concurrency

settings step-by-step and run corresponding experiments

for each step (e.g., from 3 to 200 in Figure 3(a)). In addition,

model reconstruction and retraining are required for the

static offline models when the system conditions change at

runtime (e.g., hardware resource reallocation and change

in system state such as dataset [34]). Thus, offline models

cannot quickly adapt to the optimal concurrency setting for

latency-sensitive microservices applications, which usually

have strict SLOs.

The dynamic onlinemodel [21] solves such time-consuming

problems by building and revising the performance model

during runtime. Unlike the brute-force search in offline

models, the online model estimates the optimal resource

allocations for each service based on the correlation among

the real-time fine-grained monitoring metrics (e.g., through-

put and concurrency) within a short time window (e.g., 3

minutes). For example, Figure 4(b) uses a scatter graph to

characterize the correlation between a service’s throughput

and concurrency, measured at a 100ms time granularity

during a 3-minute time window.

However, such a correlation model suffers from two lim-

itations. First, extracting the main sequence curve from a

scatter graph is a non-trivial task since many factors could

affect the quality of the scatter graph. For example, an inap-

propriate time window could lead to large variations in the

concurrency-throughput pairs due to the complex system

dynamics, making the main sequence curve extraction ex-

tremely difficult from the scatter graph. Second, the online

model recommends the optimal concurrency setting every

once within a pre-defined time window (e.g., 3 minutes),

which is still considered to have a coarse time granularity for

the bursty workload in microservices [15]. For example, the

online model-based ConScale [21] framework only tunes the

optimal soft resource allocation every 3 minutes as model

correlation requires sufficient real-time metrics. Such coarse

concurrency adaptation cannot guarantee SLO requirements

for microservices because system condition changes (e.g.,

hardware resource reallocation and system state updates) are

far more frequent in microservices-based applications [37].

3.2 Concurrency Adaptation Using RL
Reinforcement Learning (RL)-based model inherits the bene-

fits of online models and further resolves their limitations.

First, the RL model improves the concurrency estimation by

adopting the historical data replay mechanism (e.g., Experi-

ence Replay [24]) and involving more contextual information

(e.g., system conditions and resource utilization) as model

input. The historical data replay mechanism can mitigate

large variations in updates by training the parameters with

a minibatch consisting of randomly selected historical data,

enabling a more stable learning procedure to provide valid

estimations continuously. Moreover, the RL model with more

contextual system information provides a more accurate es-

timation to handle system condition variations than does a

throughput-driven correlation model. This is because the RL

model can characterize the runtime environment more pre-

cisely by comprehensively considering throughput, resource

utilization, and changes in system conditions.

Second, the RL model can provide frequent concurrency

adaptations (e.g., 1s) based on a tight feedback loop. The RL

model determines the optimal actions directly based on the

states of the environment without relying on the correlations

between real-time metrics over a time window (e.g., 3 min).

Therefore, the RL model saves time during the data collec-

tion phase to provide fast concurrency adaptation to handle
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dynamic system conditions in a microservices-based system.

Besides, the RL model allows direct learning from the actual

workload without human intervention, which reduces the

significant efforts of experts compared to statistical models.

What is RL? RL refers to a trial-and-error learning mech-

anism. Concretely, the RL model learns to solve a sequen-

tial decision-making problem by interacting with the en-

vironment. The model observes a state (𝑠𝑡 ∈ 𝑆) from the

environment at each time step 𝑡 . Then it performs an ac-
tion (𝑎𝑡 ∈ 𝐴) that can maximize the action-value function

𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ), which records the estimated reward of available

actions mapped to the current state. After the action is taken

at 𝑡+1, themodel observes a reward (𝑟𝑡 ∈ 𝑅) given by a reward
function 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and forms a tuple (transition) (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1).
The model’s goal is to optimize the action-value function to

maximize the expected cumulative discounted reward, where
the return from a state is defined as Σ𝑇

𝑘=0
𝛾𝑘𝑟𝑡+𝑘 . The discount

factor 𝛾 ∈ (0, 1] penalizes the predicted future rewards.

Deep Q-Learning Algorithm. In particular, we utilize

the deep Q-learning algorithm by adopting a DQN model

for optimal concurrency setting adaptation. The DQN model

directly learns from high-dimensional observed data using a

deep neural network to approximate the Q-value function

and performs actions with the highest expected Q-value.

Compared to other dynamic online models (e.g., Bayesian

Optimization (BO) [18], Contextual Bandits (CB) [31], and

Deep Deterministic Policy Gradient (DDPG) [28]), DQN pro-

vides two distinct advantages.

• DQN models the concurrency adaptation as a Markov

decision process and optimizes for a long-term cumu-

lative reward in dynamic microservice environments.

BO and CB target short-term optimal actions based on

past observations without considering future states,

which may cause an unstable learning process and

incur SLO violations (see Figure 7(c)).

• DQN is a value-based method that can effectively solve

problems with a discrete action space by directly evalu-

ating the Q-value for each concurrency setting. DDPG,

based on an actor-critic approach, adds a policy-based

actor-network, which involves more hyperparameters

in training and would slow down the learning process

(see Figure 7(d)).

Algorithm 1 shows the pseudocode of the training algo-

rithm. To make our RL model explore better actions during

the training process, we add noise with a probability of 𝜖

to the action selected based on the Q-value (line 8). Such

a strategy makes the RL model exploit the rational actions

over the entire training process, as it can avoid bad trials for

allocating too much concurrency due to random strategy. On

the other hand, to eliminate oscillations of the update effect,

DQN builds a target Q network 𝑄̂ (𝑠𝑡 , 𝑎𝑡 ; ˆ𝜃 ) which is a copy of

Environment
(Microservice)
Environment
(Microservice)

States (𝑺𝒕)

Throughput Ratio (𝑇𝑃𝑅௧) Latency Ratio (𝐿𝑅௧)

Resource Utilization (𝑅𝑈௧) System Condition (𝑆𝐶௧)

Actions (𝑨𝒕) Reward (𝒓𝒕)

Concurrency Setting(t) 𝑟௧ = 𝛼 ȉ 𝐿𝑅௧ + 𝛽 ȉ 𝑇𝑃𝑅௧ ȉ 𝑅𝑈௧

… …
RL-agent

Environment
(Microservice)

states

actions

reward

Each
Time step

Figure 5: Architecture of RL model with a Deep Q-
Network (DQN) for estimating optimal concurrency
setting in a microservice instance.

the value function𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ). We synchronize the estimated

network with the target network every C steps to stabilize

learning. The value function 𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ) with parameter 𝜃

and its corresponding loss function 𝐿(𝜃 ) are defined as:

𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜃 ) = E[𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1;𝜃 )] (1)

𝐿(𝜃 ) = 1

𝑁
Σ𝑖 (𝑟𝑖 + 𝛾𝑄̂ (𝑠𝑖+1, 𝑎𝑖+1; ˆ𝜃 )) −𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃 ))2 (2)

Problem Formulation.We formulate the concurrency

settings (i.e., soft resource allocation) adaptation as a sequen-

tial decision-making problem that can be solved by the above

RL framework. At each time step 𝑡 , we measure resource uti-

lization (e.g., CPU utilization) and request rate, throughput,

response time, and current system conditions, including com-

putational complexity of service business logic and dataset

size for database services (Section 2.3). The RL model calcu-

lates the states listed in Figure 5 with these measurements.

Throughput Ratio (𝑇𝑃𝑅𝑡 ) is defined as the current through-

put to request rate ratio. Latency Ratio (𝐿𝑅𝑡 ) is defined as

SLO Latency/Response Time. If no messages arrive or the

response time is zero, it is assumed that there is no SLO vio-

lation (𝐿𝑅𝑡 = 1). Resource Utilization (𝑅𝑈𝑡 ) is defined as the

ratio of critical hardware resource utilization to its limit (e.g.,

𝐶𝑃𝑈𝑡 = 𝐶𝑃𝑈𝑢𝑡𝑖𝑙 ./𝐶𝑃𝑈𝑙𝑖𝑚𝑖𝑡 ). System Condition (𝑆𝐶𝑡 ) is an
array to summarize all microservices’ underlying hardware

resource limits and deployment within an execution path.

For example, the system condition for a “Cart” service can
be labeled as [code version:“Cart:Light-v1”, dataset:“Cart-
db:User-2K"]. We extract this information by referring to the

container status and further encode it for model input with-

out manual labeling. A better system conditions modeling

would further improve the performance of our RL model in

the future. Reward function design has non-trivial implica-

tions on the concurrency adaptation policy. The ultimate
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Algorithm 1 Deep Q-learning with Experience Replay

1: Init replay memory 𝐷

2: Init action-value function 𝑄 with random weights 𝜃

3: Init target action-value function 𝑄̂ with weights
ˆ𝜃

4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,𝑀 do
5: Receive initial observation state 𝑠1
6: for 𝑡 = 1, 𝑇 do
7: Select action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄 (𝑠𝑡 , 𝑎;𝜃 )
8: With probability 𝜖 set Noise 𝑁 = 𝑁 (𝑎𝑡 )
9: Execute action 𝑎𝑡 + 𝑁 (𝑎𝑡 )
10: Observe new state 𝑠𝑡+1
11: Generate and Store transition(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷

12: Sample N transitions (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) from 𝐷

13: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑚𝑎𝑥𝑎′ 𝑄̂ (𝑠𝑖+1, 𝑎
′
;
ˆ𝜃 )

14: Perform a gradient descent step (𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃 ))2
15: Every C steps reset 𝑄̂ = 𝑄

16: end for
17: end for

goal of our RL model is to learn to select the optimal ac-

tion that minimizes the latency (i.e.,𝑚𝑖𝑛𝜋𝑡𝐿𝑅𝑡 ) while maxi-

mizing the throughput under high resource utilization (i.e.,

𝑚𝑎𝑥𝜋𝑡𝑇𝑃𝑅𝑡 ·𝑅𝑈𝑡 ). Based on both objectives, the reward func-

tion is defined as 𝑟𝑡 = 𝛼 · 𝐿𝑅𝑡 + 𝛽 ·𝑇𝑃𝑅𝑡 · 𝑅𝑈𝑡 .

3.3 Speed up via Fine-grained Sampling
Metrics

DQN adopts the 𝜖-greedy exploration strategy to choose

a random action with a probability of 𝜖 . However, it may

suffer from data inefficiency in environments with sparse

rewards, which slows down the learning process [10]. Be-

sides traditional boosting approaches (e.g., prioritized experi-

ence replay), we propose utilizing fine-grained sampling (e.g.,

100ms) reward-related metrics to generate more valid transi-

tions within limited physical time steps. The metrics include

request rate, throughput, response time, and concurrency.

Our idea is similar to the approaches that use a multi-

agent DQN to enhance the learning process by parallel train-

ing [33]. In contrast, we adopt a single agent and regard

the measured concurrency as the action trials from other

agents to generate multiple transitions and store them in

the memory buffer within a physical time step. Such an ap-

proach inherits the knowledge derived from the existing

online correlation model (Figure 4(b)) [21]. The correlations

between concurrency and performance reward serve as the

prior knowledge and help our RL agent quickly learn from

the experience. Moreover, using fine-grained concurrency as

actions can mitigate the reward fluctuations due to system

state variations during online exploration. Our approach en-

ables the DQN to perform 6 × faster than the vanilla DQN

under a single system condition training scenario. We will

show experimental validations in Section 5.2.
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Figure 6: 𝜇ConAdapter framework for coordinating op-
timal concurrency adaptation with hardware scaling.

4 𝜇CONADAPTER FRAMEWORK
So far, we have described our RL model that applies run-

time optimal concurrency adaptation to a microservice. Our

experimental results show that hardware-only scaling can-

not handle performance degradation caused by inappropri-

ate soft resource allocation (Figure 1); thus, runtime soft

resource adaptation management is required to complement

the hardware-only autoscalers to achieve better performance.

This section presents our 𝜇ConAdapter framework, which

integrates the RL-based concurrency adaptation (Section 3)

to work with a hardware-only autoscaler. Figure 6 shows the

four main components of 𝜇ConAdapter: Monitoring Module,

Critical Service Localization Module, DQN Optimal Concur-

rency Estimator, and Reallocation Module.

4.1 Module Design
Monitoring Module collects both application- and system-

level metrics (e.g., throughput and CPU). We use distributed

tracing and public monitoring tools to implement the mon-

itoring module. Distributed tracing is a popular method to

monitor microservices by recording the arrival and depar-

ture timestamps of a request as a span within a microservice.

We implement an OpenTracing-compliant tracing module in-

side each microservice to collect request spans and generate

application-level metrics by processing these spans. Addi-

tionally, the monitoring module also extracts system-level

metrics (e.g., container resource utilization) via cAdvisor.

Critical Microservice Localization Module is respon-
sible for identifying the bottlenecked microservice along an

execution path in the system triggered by an HTTP request.

This identification of critical microservices is crucial for pre-

venting invalid operations on non-critical microservice soft
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Parameter Value
Experience Replay Capacity (D) 10!

Minibatch 64

Learning Rate 1e -3

Reward Discount (𝛾) 0.9

Target Model Update Frequency (C) 10

Exploration Noise Probability (𝜖) 0.1

# Hidden Layers × # Hidden neurals 2×40

Speed Up Sampling Period 100ms

Table 1: DQN Training Parameters

resource reallocation within a large-scale system [19]. In-

spired by the approach in FIRM [28], we employ a two-step

method for localizing the critical service. Firstly, we assess

the resource utilization of each microservice. Secondly, we

calculate the Congestion Ratio, which is the ratio of the 99th

percentile latency to the 50th percentile latency. A high re-

source utilization indicates that the microservice has reached

its capacity, while a high Congestion Ratio suggests that

requests at the tail-end are congested within the current

microservice. In both cases, it is necessary to adjust the cor-

responding concurrency setting.

DQN Optimal Concurrency Estimator selects the ac-
tion with the highest expected reward based on the RL model

and triggers the Concurrency Adapter to execute the action.

Our DQN has a moderate feedback loop (i.e., the timestep

is 1s), which is sufficient for action execution. A too-long

control loop will prolong the convergence of DQN and incur

a longer SLO mitigation time. On the other hand, a too-short

control loop (e.g., 0.2s) would introduce around 10% CPU

overhead due to frequent concurrency adaptation.

Reallocation Module includes an autoscaler to man-

age system hardware resource scaling and a Concurrency

Adapter to execute the action command from the DQN Op-

timal Concurrency Estimator. Unlike previous thread adap-

tation frameworks (e.g., DCM [34] and ConScale [21]), our

Concurrency Adapter works independently from the hard-

ware autoscaler. This is because soft resource re-adaptation

depends on the current runtime system condition through

continuous monitoring, independent of hardware resource

provisioning. Moreover, an optimal soft resource allocation

would update when some runtime changes happen in reality,

such as hardware scaling and deployment of new code ver-

sions of a microservice, requiring decoupling of RL decisions

from hardware resource scaling.

4.2 Implementation Details
Request Tracing Management. Our DQN relies on dis-

tributed tracing (inspired by FIRM [28]) to collect detailed

request information to generate fine-grained performance

metrics to update optimal soft resource allocation. However,

efficient management of real-time trace data in a large-scale

microservice system is a great challenge [14]. To mitigate

this problem, we first use a graph database, Neo4j, to effi-

ciently store and query the complex invocations of services.

Furthermore, we prepare a separate lightweight database

(e.g., MongoDB) for each microservice to store the request

timestamp records of the current service, which enables the

overhead removal of the heavy filtering and aggregation

tasks due to the large-scale microservices. On the other hand,

we isolate the resource (e.g., CPU) for the monitoring agent

and microservices in each VM to avoid interference with

monitoring. Our overhead analysis shows a maximum CPU

overhead of 5% of all loads when enabling metrics collec-

tion/tracing in 𝜇ConAdapter. On the other hand, the fine-

grained application-level metrics are calculated in dedicated

machines, which does not add any additional overhead to

the target runtime system.

DQN Agent Implementations. We implemented the

DQN framework using PyTorch [27]. Inspired by existing RL

resource management research (e.g., FIRM [28] and Deep-

Scaling [36]), we designed the Q-network to contain two

fully connected hidden layers with 40 hidden units, all using

the ReLU activation function. This setup can achieve good

learning efficiency and performance in our microservice

benchmark applications. Adding more layers and hidden

layers may slow down the training speed. Hyperparame-

ters of the DQN model are listed in Table 1. Furthermore,

the Q-network has four inputs for environment states and

a restricted output space for different services. Target soft

resource allocation has a rational range. For example, we

can set 200 outputs for thread pool allocation in Cart as
the enabled Tomcat in SpringBoot has a default of 200 max-
threads. Limiting the action space with profiling knowledge

can mitigate the impact of sub-optimal actions during RL

explorations.

Independent Hardware and Soft Resource Control
Flow. We have implemented concurrency adaptation and

hardware resource autoscaler separately to make our work

easily coordinated with existing hardware-only resource

management solutions. The two-model solution increases

the interpretability of each model due to its simplicity. In con-

trast, adding soft resource adaptation actions to the existing

hardware controller (e.g., FIRM) could lead to a state-action

space explosion issue, which significantly increases the train-

ing overhead of the RL model. This is because soft resources

usually have a large configuration space due to the heteroge-

neous service implementation (recall from Section 2.1), and

the parameters and performance usually have a nonlinear

relationship. For example, liberal allocation of threads or con-

nections would degrade the service performance instead of

improving it (see Figure 3). A unified controller might be the
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(a) DQN with Speed Up reward gets
stable at 50 timesteps

(b) Vanilla DQN reward gets stable
at 320 timesteps

(c) BO reward does not get stable
within 800 timesteps

(d) DDPG reward gets stable at 650
timesteps

Figure 7: Convergence of our DQN model with Speed Up and other dynamic online models (i.e., vanilla DQN,
Bayesian Optimization (BO), and DDPG under a static workload scenario for a Cart service instance. The DQN
with Speed Up is more effective than vanilla DQN, BO, and DDPG in online concurrency adaptation.

Execution Path Critical Service Accuracy

ReadHomePost
Home-Timeline 95%

Post-Storage 90%

ReadHomeTimeline
Home-Timeline 93%

Home-Timeline-
mongodb

85%

GetFollower
Home-Timeline 92%

Social-Graph 95%

Table 2: Accuracy of critical service localization for
three execution paths in SocialNetwork application.

ideal solution for this joint optimization problem, assuming

the training overhead can be significantly reduced.

5 EXPERIMENTAL EVALUATION
In this section, we first evaluate the accuracy of our criti-

cal service localization during a single-bottleneck test (Sec-

tion 5.1). We then examine the efficiency of our proposed

Speed Up mechanism in accelerating the DQN model’s train-

ing process (Section 5.2). We evaluate the effectiveness of

𝜇ConAdapter in assisting the hardware-only autoscaler (i.e.,

Kubernetes Autoscaling [16] and FIRM [28]) in stabilizing

performance fluctuations under six realistic bursty work-

load scenarios [9] (Section 5.3). Furthermore, we compare

our 𝜇ConAdapter with the state-of-the-art soft resource re-

adaptation framework, ConScale [21], when faced with vari-

ous runtime system conditions changes (Section 5.4).

5.1 Critical Service Localization
To assess the accuracy of our critical service localizationmod-

ule, we tested three execution paths within the SocialNetwork
application and configured a single bottleneck service along

the path by limiting CPU resources (e.g., 1 vCPU). For each

path, we tested the accuracy of two critical service estimation

cases. For example, we examined Home-Timeline and Post-

Storage as the critical services when composing requests

"ReadHomePost". We gradually increased the workload and

recorded the resource utilization and congestion ratio of each

service for critical service estimation. We selected workloads

uniformly at random within a range where the workload

can cause the 95th percentile end-to-end latency in [0.5s, 2s].

Table 2 reveals that the average accuracy is 91.6%, supporting

the effectiveness of our critical service localization module.

5.2 Fast Convergence of Online
Concurrency Adaptation Using DQN
with Speed Up

To understand the convergence behavior of our DQN model,

we conducted extensive experiments using a realistic work-

load with a fixed number of concurrent users (i.e., 1500) to

train our RL model during runtime, and the model would

converge and generate the optimal resource allocation for

the static system condition. We set the think time in our RUB-

BoS workload generator to be 1s between two consecutive

requests and allocate the bottleneck service Cart with a 2-

core CPU limit. The model will converge and recommend the

optimal soft resource allocation to reach the highest reward

with a stable learning process.

Figure 7(a) shows that the reward for our DQN model

rapidly increases at the beginning of the training process and

becomes stable (reaches about 0.9) at around 50 timesteps.

For comparison, Figure 7(b) shows that the reward for vanilla

DQN converges at around 320 timesteps, which is 6× slower

than our DQN model with the Speed Up mechanism. This is

because our DQNmodel has more sampling data for training

(10×) than the vanilla DQN model due to the fine-grained

sampling interval (100ms in our DQN model vs. 1s in the

vanilla DQN model). Our Speed Up mechanism helps the

DQN model exploit 10 virtual interactions with the runtime

system within one physical timestep. These virtual interac-

tions can provide actual knowledge of the current system

state since actions and rewards are derived from runtime

correlations between concurrency and performance metrics

(Recall Figure 4). Hence, the DQN model with Speed Up al-

ready has 500 interactions experienced at 50 timesteps, and

the vanilla DQN starts to converge until it accumulates the

actual 320 interactions. However, such a benefit of sampling

is not a free lunch. Due to large variations in measurement, A
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(a) The system response time spikes appear during 40s ∼ 82s, 210s

∼ 250s, and 520s ∼ 555s under the “large variation” workload trace

without 𝜇ConAdapter. The system throughput drops during these

periods.
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(b) The system response time is more stable compared to Figure 8(a)

under the same workload trace with 𝜇ConAdapter and system

throughput matches the workload trace.
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(c) Catalogue scales out along with Pod CPU utilization at 62s, 241s,

and 542s. Opened database connections presented spikes during the

period from 40s ∼ 82s, 210s ∼ 250s, and 520s ∼ 555s.
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(d) Catalogue scales out along with Pod CPU utilization at 68s, 239s,

and 542s. 𝜇ConAdapter helps maintain a limited number of database

connections during the whole period.

Figure 8: Performance comparison between Kubernetes HPA (Figures (a)(c)) and 𝜇ConAdapter (Figures (b)(d)) under
the same “Large Variation” workload. Our 𝜇ConAdapter outperforms Kubernetes HPA in stabilizing response
time fluctuations due to the DQN agent limiting the database connection pool size to around 10.

low sampling rate (e.g., 20ms) may not contribute to accurate

concurrency and performance metrics. Our Speed Up mecha-

nism boosts the process of exploration, standing orthogonal

to existing exploration strategies (e.g., 𝜖-greedy).

We further compare the training process of our DQN with

a BO model and a DDPG model under the same static work-

load scenario to validate the benefits of DQN for concur-

rency adaptation. Figure 7(a) and Figure 7(c) show that our

DQN with Speed Up can converge faster and have a more

stable learning process than the BO model since BO only

recommends short-term optimal actions based on prior ob-

servations. The frequent sub-optimal trials caused by system

state variations would incur frequent SLO violations dur-

ing the online learning process. Figure 7(d) shows that the

DDPG model has a much longer training convergence time

(650 timesteps), which is 13× longer than our DQN with the

Speed Up mechanism. This is because DDPG involves more

hyper-parameters by adopting an actor-critic approach con-

sisting of an actor-network and a critic-network (DQN uses

one network). Moreover, DDPG determines actions based

on the actor-network and sometimes incurs action skew to

degrade the performance. The reward curve fluctuations in

Figure 7(c) and 7(d) are caused by unstable action policies. By

contrast, DQN is more stable as it directly tunes the Q-value

for the available concurrency settings.

5.3 Complementing Hardware-only
Autoscaling Solutions

Autoscaler Setup.We deploy 𝜇ConAdapter, Kubernetes Au-

toscaling, and FIRM in our private cluster. The Kubernetes

Autoscaling employs a rule-based scaling policy by monitor-

ing resource utilization of microservice instances (e.g., Pod

CPU utilization > 80%) and supports both horizontal (HPA)

and vertical scaling (VPA). FIRM offers an RL-based fine-

grained hardware resource management for microservices.

We conduct evaluation experiments using three representa-

tive microservices (i.e., Catalogue, Cart, and Home-timeline

services) from two benchmark applications.We configure the

bursty workload that adjusts the number of concurrent users

every 30 seconds by following six real-world traces [9]. Each

user follows a Markov chain model to navigate the target

benchmark applications with an average of 1-second think

time between consecutive HTTP requests. The maximum

concurrent users for Catalogue, Cart, and Home-Timeline ser-

vices are 3000, 3500, and 5200, respectively, and the duration

of each workload trace is 12 minutes.

Horizontal Scaling. Figure 8 compares the system per-

formance (i.e., throughput and response time) between Ku-

bernetes HPA and 𝜇ConAdapter under the same “Large Vari-

ation” workload trace for a Catalogue service. Catalogue
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(a) The system response time spikes appear during 180s∼260s,
500s∼570s under the “large variation” workload.
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(b) Relatively stable system response time under the same workload

trace in (a) with 𝜇ConAdapter.

 0

 100

 200

 300

 400

 500

 0  120  240  360  480  600  720

 0

 15

 30

 45

 60

 75

Pod CPU Limit

P
od

 C
P

U
 U

til
(C

ar
t)

 [
%

]

R
u

n
ni

ng
 T

h
re

a
ds

(C
ar

t)
 [#

]

Timeline [s]

Running Threads
CPU Util.

(c) FIRM manages the CPU limit for Cart service. The Pod CPU re-

sources are under-utilized after Cart scales up to 4-core due to the

under-allocation of server threads.
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(d) FIRM manages the CPU limit for Cart service. The Pod CPU

resources can be fully utilized after Cart scales up to 4-core due to

optimal thread pool reallocation conducted by 𝜇ConAdapter.

Figure 9: Performance comparison between FIRM (Figures (a)(c)) and 𝜇ConAdapter (Figures (b)(d)) under the same
“Large Variation” workload. Our 𝜇ConAdapter can help FIRM to stabilize response time fluctuation by re-adapting
thread pool allocation to match the bursty workload.

adopts an on-demand database connection strategy by de-

fault, which establishes new connections as needed. Our

𝜇ConAdapter achieves a relatively stable response time and

throughput in a 12-minute experiment than that in the Ku-

bernetes HPA case (see Figures 8(a) and 8(b)). For example,

large response time fluctuations and throughput drops ap-

pear in the Kubernetes HPA case during the peak workload

phases (40s∼82s, 210s∼250s, and 520s∼555s). Taking the pe-

riod 520s∼555s in Figures 8(a) and 8(c) as an example, before

adding the new Catalogue instance at 542s, we note that the
number of database connections starts to accumulate and sig-

nificantly affects the system performance. Once the second

Catalogue serves new incoming requests, the downstream

Catalogue-db would receive double concurrent requests. The
high concurrent requests would further degrade the CPU

efficiency of the database service (i.e., 542s∼555s). On the

other hand, our 𝜇ConAdapter can stabilize response time

and throughput during the whole experiment runtime, as

shown in Figure 8(b). This is because 𝜇ConAdapter limits

the database connection pool size to 10 based on our DQN

model (see Figure 8(d)), which helps avoid large response

time spikes during the temporary overloading.

Vertical Scaling. We then validate the effectiveness of

our 𝜇ConAdapter when adopting vertical scaling for stateful

microservices (e.g., Cart). Unlike horizontal scaling, verti-
cal scaling (i.e., adding or removing vCPU) would mitigate

the impact of the complex dependencies between upstream

and downstream microservices. However, it still requires

concurrency adaptation to avoid performance degradation

due to the lack of coordination between hardware and soft

resources. We initially set Cart thread pool to be 6, which is

optimal for Cart with 2-core vCPU through pre-profiling.

We compare our 𝜇ConAdapter with both the Kubernetes

VPA and FIRM [28]. Figure 9 shows the comparison between

FIRM and 𝜇ConAdapter under the same “Large Variation”

workload trace for aCart service. Figure 9(c) shows that FIRM
can tune CPU limit with fine granularity and provide faster

scaling to help reduce SLO violations. However, it still cannot

avoid the large response time spikes during the temporary

overload phase (180s∼260s and 500s∼570s) in Figure 9(a). A

response time spike appears even though FIRM scales up the

CPU limit to 4-core (maximum allocation) from 180s to 260s

(see Figures 9(a) and 9(c)). FIRM did not adapt the thread

pool accordingly after scaling hardware resources, making

the original optimal threads allocation insufficient to fully

utilize the hardware resources (e.g., CPU) as we studied in

Section 2.3. The CPU utilization of Cart is about 310% even

though the CPU limit is scaled up to 4-core, leading to Cart
CPU’s low efficiency and sub-optimal system performance.

On the other hand, our 𝜇ConAdapter dynamically adapts

Cart thread pool from 6 to 25 after several trials to match

the updated vCPU allocations in Figure 9(d).

We further compare the average throughput and tail la-

tency (i.e., 95th and 99th percentile) between the hardware-

only scaling frameworks and our 𝜇ConAdapter under other

types of workload traces in Table 1. Our 𝜇ConAdapter can
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Workload Trace

Cart service in Sock Shop

95th Percentile 
Response Time [ms]

99th Percentile 
Response Time [ms]

Throughput
[reqs/s]

K8s VPA/FIRM/ K8s VPA/FIRM/

659 / 501 / 203 768 / 592 / 315 1142 / 1185 / 1261

726 / 500 / 214 808 / 553 / 303 1651 / 1732 / 1990

704 / 663 / 326 748 / 749 / 472 1078 / 1196 / 1246

498 / 535 / 186 600 /  642  / 297 702 /  731  / 741

687 / 551 / 268 753 / 633 / 358 1421 / 1472 / 1699

744 / 624 / 288 803  / 687 / 432 1283 / 1318 / 1466

Large 
Variation

Quick 
Varying

Slowly 
Varying

Big 
Spike

Dual 
Phase

Steep 
Tri Phase

Home Timeline service in Social Network

95th Percentile 
Response Time [ms]

99th Percentile 
Response Time [ms]

Throughput
[reqs/s]

K8s HPA/ K8s HPA/ K8s HPA/

499 / 189 1027 / 354 1673 / 1938

469 / 185 860 / 305 2082 / 2579

461 / 164 1047 / 414 1809 / 2050

520 / 219 1171 / 403 1230 / 1438

314 / 84 1122 / 334 2120 / 2334

283 / 68 1045 / 188 1481 / 1705

𝝁ConAdapter 𝝁ConAdapter 𝝁ConAdapter 𝝁ConAdapter 𝝁ConAdapterK8s VPA/FIRM/𝝁ConAdapter

Table 3: Tail response time (i.e., 95th and 99th percentile) and throughput comparison between Kubernetes HPA,
Kubernetes VPA, FIRM, and 𝜇ConAdapter under six realistic bursty workload traces for two representative services
from SockShop and SocialNetwork.

significantly reduce the 95th and 99th percentile latency by

2× than Kubernetes VPA and FIRM. We further evaluate

the effectiveness of 𝜇ConAdapter in a more sophisticated

benchmark, SocialNetwork. Our 𝜇ConAdpater achieves 3×
lower on average 95th and 99th percentile latency for the

Home-Timeline service than Kubernetes HPA.

5.4 Performance Comparison between
𝜇ConAdapter and ConScale

ConScale [21] is a state-of-the-art framework that coordi-

nates fast concurrency adaptation with autoscaling to sta-

bilize the system response time, which performs similarly

to 𝜇ConAdapter when optimal concurrency remains stable

due to little runtime changes (e.g., vertical scaling and mi-

croservice rolling updates). We argue that our 𝜇ConAdapter

shows better adaptability due to the RL model compared to

ConScale’s online statistical SCT model. Our 𝜇ConAdapter

adjusts soft resources every second, while ConScale reallo-

cates soft resources only after hardware resource scaling.

Moreover, the SCT model needs a coarse 3-minute time win-

dow to reconstruct the correlation model and recommend a

new optimal setting. Such a reaction window highly affects

the quality of model estimation. This is because ConScale

employs online regression using a batch of recent observa-

tions. A short reaction window with insufficient new data

would degrade ConScale’s decision. Figure 10 validates that

𝜇ConAdapter can provide better concurrency adapting un-

der the same “Large Variation” workload trace facing the

system condition changes (e.g., upgrading of microservices

business logic and drifting of system state).

Upgrading of Microservices Business Logic. We start

our experiments with the original Catalogue service, then
upgrade the code to an optimized version with fewer com-

putations for organizing the socks, which reduces the ser-

vice time of the corresponding requests. Figure 10 shows

that 𝜇ConAdapter and ConScale have comparable response

time performance before Catalogue version upgrade at 401s

since both frameworks adopt optimal database connections.

However, 𝜇ConAdapter outperforms ConScale in achieving

a much more stable low response time during the period

540s∼570s in Figure 10(a). This is because ConScale updates

the new optimal database connections at 581s, and Catalogue
scales out at 565s in Figure 10(b)). The delay of database

connection reallocation causes a response time spike (period

540s∼565s) since the previous optimal setting for the original

Catalogue is no longer valid (Figure 10(c)).

We apply Pareto analysis [18] to evaluate whether

𝜇ConAdapter does optimal soft resource allocation. A Pareto

optimal solution to a multi-objective optimization problem

should be equally good or better in all objective functions

(at least one). We apply a Pareto analysis on the perfor-

mance/cost tradeoffs of 𝜇ConAdapter after microservice

updates (i.e., 401s∼701s) in Figure 10. We first extract the

performance reward of each action of 𝜇ConAdapter every

second. Then we measure the sum of normalized CPU and

memory utilization as the resource cost. Figure 11(a) shows

that 𝜇ConAdapter’s database connections adaptation fol-

lows the Pareto frontier (i.e., 0.14 deviation from the Pareto

front of every decision), and resource cost and performance

reward are linearly dependent, indicating that 𝜇ConAdapter

helps Catalogue fully utilize the hardware resources and

achieve optimal performance. By contrast, ConScale’s sub-

optimal actions cause a low-performance reward (e.g., < 0.8)

while incurring high resource cost (e.g., > 1.5). This is far

from the Pareto frontier and also exhibits a larger deviation

of 0.213 (see Figure 11(b)).

Drifting of System State. In this set of experiments, we

initially launch Cart-db service with the original dataset

and then manually enlarge the dataset to compare the
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Figure 10: 𝜇ConAdapter achieves more stable response
time than that in ConScale case after Catalogue service
upgrades to use fewer computations (i.e., 401s∼720s).
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(a) 𝜇ConAdapter follows the Pareto

frontier and fully utilizes the critical

resources.
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(b) ConScale exploits sub-optimal

actions that cause high resource

cost and a low-performance reward.

Figure 11: Pareto analysis on performance/cost trade-
offs of 𝜇ConAdapter and ConScale from 401s∼701s
in Figure 10. 𝜇ConAdapter does Pareto-optimal soft
resources allocation while ConScale suffers from re-
source inefficiency due to sub-optimal allocations.

performance differences between 𝜇ConAdapter and Con-

Scale. Figure 12 shows a consistent experimental result that

𝜇ConAdapter outperforms ConScale in stabilizing response

time spikes after Cart-db database update (i.e., enlarging

Cart-db dataset) at 401s. ConScale has encountered higher

response time spikes than those in the 𝜇ConAdapter case

during the period 500s∼600s in Figure 12(a). ConScale fails

to adjust the thread pool since no hardware resource scaling

was triggered after Cart-db updates and previous optimal

server threads cannot fully utilize all 4-core CPU resources

(e.g., about 340%). In contrast, 𝜇ConAdapter captures fine-

grained system state data with a tight feedback loop and

quickly generates new server thread recommendations.

Therefore, our experimental results demonstrate our pro-

posed 𝜇ConAdapter can effectively provide better adaptivity

and reliability to fast and accurately adapt the optimal soft

resource allocation to various system condition changes.
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Figure 12: Our 𝜇ConAdapter achieves more stable re-
sponse time than that in ConScale case after Cart-db
service upgrades to persist an enlarged dataset (i.e.,
401s∼720s).

5.5 Runtime Overhead Analysis
Overhead Imposed by RL Update. We used PyTorch to

implement a DQN-based model for optimal concurrency

adaptation. Initially, we fine-tuned each microservice’s DQN

model by considering a specific hardware resource alloca-

tion and learning from diverse system states resulting from

bursty workloads. Take the Cart service as an example. In

the initialization phase, thanks to the small number of hyper-

parameters and our Speed Up mechanism, our DQN model

took just 50 timesteps to identify the optimal concurrency.

Meanwhile, the minimal cost of soft resource adaptation op-

erations ensures tight feedback from RL agents. For example,

thread pool adaptation in the Cart service required an aver-

age latency of 62ms in all workloads, which is considered

an acceptable delay in practice. Moreover, the frequency of

RL model updates depends on the runtime changes in the

system/workload. Since RL online training operates through

trial and error, it can produce sub-optimal decisions, particu-

larly during the initial stages of workload changes.

Metrics Collection/Tracing Overhead. Similar to FIRM,

we utilize the distributed tracing method to record the ar-

rival and departure timestamps of individual requests within

the target microservice at millisecond granularity. Enabling

metrics collection/tracing in 𝜇ConAdapter results in a maxi-

mum of 5% CPU overhead under all workloads. Subsequently,

we generate fine-grained application-level metrics for the

critical service by processing the arrival and departure times-

tamps of each request it serves, which are logged in every

component service. The overhead of generating the required

application-level metrics at a 100ms sampling interval is

recorded in Table 4, which were obtained from a dedicated
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server equipped with 8 cores of Intel Xeon E5-2603v3 pro-

cessors and 8GB of RAM in the SockShop application. Con-

sequently, the collection of application-level metrics has a

negligible impact on the runtime system of the target.

6 LIMITATIONS
𝜇ConAdapter has several limitations that we plan to address

in future work. Firstly, 𝜇ConAdapter currently focuses on

two generic soft resources (i.e., server threads and connec-

tion) adaptations among most mid-tier and database services.

More types of soft resources (e.g., heap region size for mem-

ory management) and services (e.g., Memcache) are still

under investigation. Secondly, 𝜇ConAdapter is designed for

closed-loop workloads that emulate the behaviors of concur-

rent users for web applications. Evaluating 𝜇ConAdapter’s

performance with open-loop workloads can improve the gen-

erality of 𝜇ConAdapter for modern cloud systems. Thirdly,

we plan to refine 𝜇ConAdapter’s input state design to ensure

precise detection of runtime changes and model retraining. A

recent study [29] inspires us to consider using meta-learning

to facilitate model adaptation in dynamic environments.

7 RELATEDWORK
Autoscaling frameworks for microservicesmainly focus

on elasticizing computing resources (e.g., CPU and memory)

in clouds [11, 13, 22, 25, 28, 30, 38] For example, Autopi-

lot [30] uses machine learning algorithms applied to histor-

ical data about the prior execution of a job to predict the

CPU/memory usage of jobs. FIRM [28] leverages fine-grained

measurement data andmachine-learning methods to fast and

dynamically provision hardware resources to mitigate SLO

violations caused by low-level resource contention. However,

these approaches barely discuss the scaling of soft resources

(e.g., threads or connections) that control the concurrent

use of hardware resources, which could become significant

sources of performance fluctuations (see Section 2.3).

Critical service localization in microservices is challeng-

ing, and many works have studied critical path analysis from

different perspectives [14, 23, 28, 41]. For example, Kaldor et

al. [14] track requests from web browsers/mobile to backend

services by developing an end-to-end tracing system, Canopy,

which can handle billions of traces. Liu et al. [23] detect the

performance anomaly using a Deep Bayesian Network in

an unsupervised manner. Zhang et al. [41] use critical path

analysis over RPC traces to bubble up interesting activities

and discard noisy events. These works provide insights into

utilizing distributed request traces for automated anomaly

detection, which provides a good foundation for critical ser-

vice localization.

Software reconfiguration to mitigate SLO violations for

cloud applications has been studied extensively before [5,

Num Requests Request Size Processing Time Memory Usage

10K 0.5MB 0.694 sec 49MB

20K 1.1MB 0.971 sec 65MB

40K 2.1MB 1.291 sec 81MB

80K 4.2MB 1.941 sec 90MB

Table 4: Overhead of generating application-level met-
rics at 100ms sampling interval in SockShop.

20, 21, 32, 35]. For example, Sriraman et al. [32] develop

𝜇Tune, which automatically chooses load-optimal thread-

ing models for microservices based on various offered loads

to improve tail latency. Zhang et al. [40] leverage machine

learning models to automatically recommend new config-

urations for database management systems to improve the

system performance. ConScale [21] and Sora [20] adopt sta-

tistical correlation models to quickly estimate the optimal

soft resource configurations of key servers during the sys-

tem scaling process. Our work complements their work by

integrating a reinforcement learning-based model, capable

of capturing each subtle change in system conditions and

better adapting soft resource allocations for microservices.

8 CONCLUSION
We present 𝜇ConAdapter, a framework for optimal concur-

rency adaptation that integrates fast and dynamic soft re-

source reallocation for critical microservices with existing

hardware-only autoscalers. Our experiments, conducted on

two representativemicroservices benchmarks (SockShop and

SocialNetwork) using six realistic bursty workload traces,

demonstrate the effectiveness of 𝜇ConAdapter in reducing

tail latency at the 99th percentile compared to hardware-only

scaling strategies like Kubernetes Autoscaling and FIRM. Ad-

ditionally, 𝜇ConAdapter outperforms the concurrency adap-

tation framework, ConScale, facing microservices updates.

Overall, 𝜇ConAdapter enables swift mitigation of system

response time fluctuations by combining efficient hardware

and soft resource provisioning. It contributes to high re-

source efficiency and optimal performance in meeting the

demands of modern cloud applications.
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