
AutoScaling: Achieve Good Performance and High Resource Efficiency

 Effectively scaling a web application is challenging:
✥ Strict Service Level Objectives (SLO), e.g., response time < 300ms.
✥ Soft resources (e.g., server threads/connections) allocation also impact

system performance besides adding new servers.

Coordinating Fast Concurrency Adapting with AutoScaling

for SLO-Oriented Web Applications
Jianshu Liu, Louisiana State University

Real-time Online Scatter-Concurrency-
Throughput (SCT) Model

 Effectively autoscaling is difficult due to strict SLO requirements of e-commercial web applications
and complex soft resources tuning.

 Implement the ConScale framework to realize fast and intelligent soft resources adaption based on
our online SCT model to handle temporary overloading in system scaling scenarios in clouds.

 Our ConScale can help various large-scale systems effectively maintain a stable response time and
satisfy SLO requirements.

Our Solution: Integrating SCT Model to
System Scaling Design (ConScale)

 ConScale Framework Design

✥ ConScale helps EC2-AutoScaling mitigate the large response
time fluctuations. (Kubernetes-HPA and DCM also compared)

✥ ConScale can restrict the 95th and 99th response time below
500ms under six categories of workload traces.

✥ ConScale only causes a maximum 4.82% CPU overhead at
peak workload.

Conclusion

This work was accepted by IEEE Transactions on Parallel and Distributed Systems (TPDS) on February 14, 2022

 Cloud computing platforms support Automatically Scaling (AutoScaling)
a web application to match the naturally bursty workload.
✥ For example, Amazon prepares more servers to handle over 10X larger

customers over Black Friday than in regular periods.

Contact

Jianshu Liu

Department of Computer
Science and Engineering

Email: jliu96@lsu.edu

Experiment Results

VMs scaling out would
change the server concurrency

 Real-time Metrics Collection Phase
✥ Collect a server’s real-time concurrency, throughput and

response time as a tuple measured at a fine granularity (e.g.,
50ms) during a short time period (e.g., 3 minutes).

✥ Extract the main sequence curve from the scatter graph.
 Rational Concurrency Range Estimation Phase
✥ Estimate rational concurrency range [𝑄𝑙𝑜𝑤𝑒𝑟 , 𝑄𝑢𝑝𝑝𝑒𝑟] based

on statistical intervention analysis and latency threshold.

Case Study: Applying SCT Model to MySQL

✥ Our SCT model indicates the rational MySQL concurrency
range is [10, 65], which can achieve the highest throughput
and satisfy SLO requirement (i.e., RT < 50ms).

✥ We choose the lower bound of such rational range (i.e., 10)
as the optimal MySQL concurrency setting.

✥ We select the 𝑄𝑙𝑜𝑤𝑒𝑟 as the optimal concurrency setting
since we make a tradeoff to guarantee a low response time.

