Coordinating Fast Concurrency Adapting with AutoScaling
for SLO-Oriented Web Applications

Lsu Jianshu Liu, Louisiana State University

/ AutoScaling: Achieve Good Performance and High Resource Efficiency \

Cloud computing platforms support Automatically Scaling (AutoScaling) - ..t
a web application to match the naturally bursty workload. d S 00 5 2000 [
<+ For example, Amazon prepares more servers to handle over 10X larger z .

customers over Black Friday than in regular periods.

d

i3

¢

Bursty Workload Trace

9

VVMs scaling out would
change the server concurrency

1

Effectively scaling a web application is challenging:
< Strict Service Level Objectives (SLO), e.g., response time < 300ms.
+ Soft resources (e.g., server threads/connections) allocation also impact

spikes observed

Response Time [ms]
—
—
=
-
I

1500 |- L/\
—

i | i
Timeline

\ system performance besides adding new servers.

Response Time VMs scaling out

I F—

| o . i
5 ‘Thread _Connectign |
| : o | |
| ‘poolfS\ pool 1 -
—% | l:;- = |5 = 5
Workload @ & o\ U 5 U

Web Application Database |
: Tier ! Tier : Tier !
—=

Real-time Online Scatter-Concurrency-

Runtime Metrics

:d

3 IMQJ !
Workload S | s

Our Solution: Integrating SCT Model to

Throughput (SCT) Model System Scaling Design (ConScale)
; ConScale Framework Design

|
' 5 ol @ Monitoring ; - Hardware Soft Resource
,‘_'.' r_turir-‘lllzhiier._ Cﬂn!iimih] "
Web . Application | Database | 7 3caling Reallocation

N Tier | Tier | Tier | ®
_ N Metrics Decision
2 = Q“pper ‘ Actuators
~ » | Warehouse |cpuutili Controller
- — BT K Concurrenc
= : RT > Threshold' . » ongrrency
n“ oy ® .;l g p ———————————————————
o = L e 7"""SCT Model “r)
= 9 Slenle L : Historical Result
S — i — b0, TP | Fo-73r-7 |
~ = 1 .ﬂ' s G s L A+ 1 Tomcati 30
- g.. ol ° . ‘-‘g_;-.:rt:' e o __>'. e ?:I':' _..‘."'ii_J_ e : MySQL1 Sl
= P ol PR R R <QuTB>, | [*0 7 .

0 Q Concurrency [Q] () . ~ 0 '(_j. 0] 0 g R e—— ’ Upda

min Ylower max - oncurrency [Q] UYUmax | | 0 | | TTTIOC _, “““"Q pdate
min y max I-—_Dé.__E.-.E__-.:..'.'.!'r!!?ﬂk!.’.’:..‘.‘.%%.’.’._.i Asynchronously
Real-time Metrics Collection Phase _ Optimal Concurrency Estimator

< Collect a server’s real-time concurrency, throughput and

response time as a tuple measured at a fine granularity (e.g., Experiment Results

<+ Our SCT model indicates the rational MySQL concurrency
range is [10, 65], which can achieve the highest throughput

and satisfy SLO requirement (i.e., RT < 50ms).
<+ We choose the lower bound of such rational range (i.e., 10)

as the optimal MySQL concurrency setting.

peak workload.

50ms) during a short time period (e.g., 3 minutes). £C2 Auto_Sealing ConScale Auto—Scaling
< Extract the main sequence curve from the scatter graph. 5 4000 [Throvaiou Response Time J20E a0 Torousnom Response T 2400 2
= 3000 - 1800 £ = 3000 - 1800 £
> Rational Concurrency Range Estimation Phase E 200 A Hﬂ {208 Eawe | 1200%
S 1000 |- 600 £ S 1000 |- 600 £
<+ Estimate rational concurrency range [Q 0 based E o= o F E 0 o 0§
Yy g lower» Yupper = & E ' ' ' =
. —_ Tomcat Tier MySQL Tier # of VMs i Tomcat Tier MySQL Tier # of VM
on statistical intervention analysis and latency threshold. = 100 [T | W, B 0,
. . = 8 2% = 8 2%
<+ We select the Q;,uer as the optimal concurrency setting = ¢ B2 S ¢ 53
i ke a tradeoff | i : A
since we make a tradeofit to guarantee d IOW response time. > 0 > 0o F
ey Thread Pool Alloc. = DB Connection Pool Alloc. ——#— ey = Thread Pool Alloc, == DB Connection Pool Allo¢c. —#%— e
© s 240 [1480 & 5 240 Ff 1 480 o
Case Study: Applying SCT Model to MySQL T
g 120 [| ' 240 3 8 120 | 4 240 8
== =
. : . T 60 3 . i 120 § = 60 — :(_|— 120 £
Real-time Metrics Estimation Phase 2 ot To & £ of - *>— , 8
. & 2
50 " = | T r l T T l l = = a T | T T | T T
| Throughput [reqs/s] Collection Phase 7 L o concomreney R] 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 =
50 5 ATTTIUNIRY, OV Irmaray W I T o000 | fr— B - T f Timeline [s] Timeline [s]
wop] | , = 1 — —— | . - , ; T T T T T | | T T T T T
O Ry NI R e gy e o S0 oo ST [Eomcn Reasloggmg OFF | [S0l Quey Loagng OFF
A | - 'Eﬂ 2008 | Setting | | " EC2-AutoScaling 462 157 1135 687 225 101 R 100 - TSR SORE N 100 |- Iy SR
> t1: {QL TP 1, RTl} E RTosin DCM 274 92 157 367 192 75 g =
ol Concurrency [#] 3 =] I - kS S
. E} £2: {Q W ﬁ} 0 ' ; ' - ; = ConScale 157 48 85 179 81 56 = 80 - - 80
| 20 ‘ P2 SR 2 N2 o ! D -E@ EC2-AutoScaling 2345 684 3252 3081 1153 1259 E " E o
e W T _ —— — - | > 3| RTown DCM 1080 443 1499 1376 606 537 S5 Wr S
"’A‘ | tn: {QTU Thy, RTH} .%. 120 Latency Threshold is 50ms : ConScale 465 229 218 479 328 171 E w0l E "
N E : | 3 Kubernetes-HPA 213 120 276 252 121 164 8 8
Response Time [ms] g | . g2 o ConScale 79 36 56 60 85 49 > 20 > 20
\ ‘[H [g ___________ ‘%Tg < <
| :"i [33 | t: Timestamps E‘ 40 ég _ Kubernetes-HPA 1004 707 1534 1103 962 876 0 |_I 0 ﬂ
“ e T Q: Concurrency 6 . AR . 3 ConScale 266 121 276 246 187 159 3K 6K 9K 12K 15K 18K 3K 6K 9K 12K 15K 18K
8'5 '% = r = L TP: Throughput 0 0 20 30 4 50 60 70 80 Workload [# of Users] Workload [# of Users]
Timeline [s] | RT: Response Time L Concurrency [#]

<+ ConScale helps EC2-AutoScaling mitigate the large response
time fluctuations. (Kubernetes-HPA and DCM also compared)

4 ConScale can restrict the 95t and 99t response time below
500ms under six categories of workload traces.

<+ ConScale only causes a maximum 4.82% CPU overhead at

Effectively autoscaling is difficult due to strict SLO requirements of e-commercial web applications
and complex soft resources tuning.

Implement the ConScale framework to realize fast and intelligent soft resources adaption based on
our online SCT model to handle temporary overloading in system scaling scenarios in clouds.

Our ConScale can help various large-scale systems effectively maintain a stable response time and
\ satisfy SLO requirements.

|

/

This work was accepted by IEEE Transactions on Parallel and Distributed Systems (TPDS) on February 14, 2022

Jianshu Liu

Department of Computer
Science and Engineering

Email: jliude@Isu.edu

_ /

