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/ AutoScaling: Achieve Good Performance and High Resource Efficiency \

Cloud computing platforms support Automatically Scaling (AutoScaling) - ..t
a web application to match the naturally bursty workload. d S 00 5 2000 [
<+ For example, Amazon prepares more servers to handle over 10X larger z .

customers over Black Friday than in regular periods.
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VVMs scaling out would
change the server concurrency
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Effectively scaling a web application is challenging:
< Strict Service Level Objectives (SLO), e.g., response time < 300ms.
+ Soft resources (e.g., server threads/connections) allocation also impact
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\ system performance besides adding new servers.
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Our Solution: Integrating SCT Model to

Throughput (SCT) Model System Scaling Design (ConScale)
; ConScale Framework Design
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< Collect a server’s real-time concurrency, throughput and

response time as a tuple measured at a fine granularity (e.g., Experiment Results

<+ Our SCT model indicates the rational MySQL concurrency
range is [10, 65], which can achieve the highest throughput

and satisfy SLO requirement (i.e., RT < 50ms).
<+ We choose the lower bound of such rational range (i.e., 10)

as the optimal MySQL concurrency setting.

peak workload.
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<+ ConScale helps EC2-AutoScaling mitigate the large response
time fluctuations. (Kubernetes-HPA and DCM also compared)

4 ConScale can restrict the 95t and 99t response time below
500ms under six categories of workload traces.

<+ ConScale only causes a maximum 4.82% CPU overhead at

Effectively autoscaling is difficult due to strict SLO requirements of e-commercial web applications
and complex soft resources tuning.

Implement the ConScale framework to realize fast and intelligent soft resources adaption based on
our online SCT model to handle temporary overloading in system scaling scenarios in clouds.

Our ConScale can help various large-scale systems effectively maintain a stable response time and
\ satisfy SLO requirements.
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