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ABSTRACT
The modern web services landscape is characterized by numer-
ous fine-grained, loosely coupled microservices with increasingly
stringent low-latency requirements. However, this architecture also
brings new performance vulnerabilities. In this paper, we introduce
a novel low-volume application layer DDoS attack called the Sync-
Millibottleneck (SyncM) attack, specifically targeting microservices.
The goal of this attack is to cause a long-tail latency problem that vi-
olates the service-level agreement (SLA) while evading state-of-the-
art DDoS detection/defensemechanisms. The SyncM attack exploits
two unique features of microservices architecture: (1) the shared
frontend gateway that directs user requests to mid-tier/backend
microservices, and (2) the co-existence of multiple logically inde-
pendent execution paths, each with its own bottleneck resource.
By creating synchronized millibottlenecks (i.e., sub-second dura-
tion bottlenecks) on multiple independent execution paths, SyncM
attack can cause the queuing effect in each execution path to be
propagated and superimposed in the shared frontend gateway. As
a result, SyncM triggers surprisingly high latency spikes in the
system, even when all system resources are far from saturation,
making it challenging to trace the cause of performance instability.

To evaluate the practicality of the SyncM attack, we conduct
extensive experiments on real cloud systems such as EC2 and Azure,
which are equipped with state-of-the-art IDS/IPS systems. We also
conduct a large-scale simulation using a production Alibaba trace to
show the scalability of our attack. Our results demonstrate that the
SyncM attack is highly effective, as it only consumes less than 15%
of additional CPU resources of the target system while increasing
its 95th percentile response time by more than 20 times.

CCS CONCEPTS
• Security and privacy → Denial-of-service attacks;Web ap-
plication security.
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Figure 1: An illustration of system tail latency and the bottle-
neck service CPU util. of the target microservices SocialNet-
work website. (a) Without attack. (b) Under SyncM attack.
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1 INTRODUCTION
Fast response time is crucial for modern web applications, particu-
larly for e-commerce that faces intense business pressure. Studies
have shown that even small increases in page loading time can
lead to significant sales losses. For example, Amazon [35] found
that a 100ms increase in page loading time resulted in roughly a
1% reduction in sales, while Google [34] found that a 500ms delay
in search results could cause up to a 20% decrease in revenue. The
need for fast response times is even more critical for emerging
augmented-reality devices, such as Apple Vision Pro, as these de-
vices require extremely responsive web services to provide natural
and smooth user experiences. In practice, response-time sensitive
web-facing applications are particularly concerned with tail latency
(e.g., 95th or 99th percentile), rather than the average. This is be-
cause studies have shown that negative experiences tend to stick
in people’s minds more than positive ones [26]. For instance, if the
95th percentile latency is long (e.g., > 3 seconds), and a client visits
the target website with 10-page loads, there is a 41% chance that
they will experience at least one slow response [65]. This means
that almost half of the potential customers will have a degraded
user experience. The sensitivity of tail latency for modern web
applications creates new vulnerabilities for attackers to exploit.

In this paper, we introduce a new type of low-volume application
layer DDoS attack called the Sync-Millibottleneck (SyncM) attack,

https://doi.org/10.1145/3634737.3644991
https://doi.org/10.1145/3634737.3644991


ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Xuhang Gu, Qingyang Wang, Qiben Yan, Jianshu Liu, and Calton Pu

Frontend

Business Logic

Shared Database

(a) Monolithic 3-tier

Frontend

Users
Orders

CartCatalogue

Users-DB

ShippingPayment

Orders-DBCatalogue-DB Cart-DB

(b) Loosely coupled microservices

Figure 2: Two typical web service architectures.

which specifically targets microservices. The objective of the SyncM
attack is to cause performance instability that violates the service-
level agreement (SLA) for latency-sensitive targets while evading
state-of-the-art DDoS detection and defense systems. Microservices
applications have two distinct characteristics that SyncM attack
exploits: (1) the sharing of a frontend gateway microservice that
dispatches user requests to mid-tier/backend microservices [54, 58],
and (2) the co-existence of multiple logically independent execution
paths, each with its own critical resource bottleneck. In a typical
SyncM attack scenario, the attacker sends intermittent bursts of
mixed types of legitimate HTTP requests to multiple selected ex-
ecution paths of the target microservices. These requests trigger
synchronizedmillibottlenecks on those execution paths, resulting in
a queuing effect that is propagated and superimposed in the shared
frontend gateway microservice. The queuing effect produces high
latency spikes that violate the SLA for e-commerce (as shown in
Fig. 1b). Since the created millibottlenecks in each target execution
path only last for tens to hundreds of milliseconds, all the system
resources are far from saturation (e.g., <50%), making it difficult to
trace the root cause of the performance degradation.

Compared to the well-understood brute-force DDoS attacks, low-
volume attacks pose a greater security threat to businesses since
those attacks tend to go undetected, allowing the damage to persist
over an extended period [11, 15, 51, 66]. Some well-known low-
volume attacks including Shrew [36] and Slowloris [42] exploit pro-
tocol weaknesses, low-rate network layer DDoS attacks [31, 32, 55],
and flash crowds [29, 71]. The novelty of the SyncM attack lies in the
exploitation of the new architecture-level weaknesses of microser-
vices and synchronized millibottlenecks (e.g., milliseconds satura-
tion on CPU, memory, or disk I/O) among multiple independent
execution paths in a microservices architecture. Such synchronized
millibottlenecks persistently degrade the system performance while
escaping the detection of the state-of-the-art IDS/IPS tools that rely
on coarse-grained (in seconds or minutes) monitoring [5, 45].

The primary challenge in launching an effective SyncM attack
is to identify the triggering conditions for synchronized millibottle-
necks across multiple independent execution paths and quantify
the performance damage to the overall system. To gain a precise
understanding of the SyncM attack, we adopt a modified queuing
network to model the attack scenario. The model is used to nu-
merically analyze the impact of the attack on the target system
and derive the optimal attack parameters to achieve the desired
attacking goals since there is usually a trade-off between perfor-
mance damage and stealthiness. To ensure that the SyncM attack is
effective in real cloud settings, we develop a feedback control frame-
work based on the Kalman filter to fit the runtime dynamics of the

target. The framework enables fast adaptation of attack parameters
to the variation of system state. With the help of the queuing net-
work model and the feedback control framework, we show that the
SyncM attack is able to achieve the pre-defined damage goals un-
der various workload conditions and cloud settings while avoiding
detection by state-of-the-art DDoS detection mechanisms.

In brief, our contributions include:
• The first low-volume DDoS attack that targets microservices
architecture by exploiting synchronized cross-service millibottle-
necks, which ensures that the attack is both harmful and stealthy;

• A mathematical model based on queuing network theory that
accurately quantifies the impact of our attacks on microservices;

• A feedback control framework design/implementation that al-
lows attackers to dynamically fit the variation of background
workload and system state;

• Real-world demonstrations of the impact of our attack in pro-
duction clouds (e.g., EC2 and Azure). Our experimental results
show that the SyncM attack consumes less than 15% additional
CPU resources of the target system while increasing the 95th
percentile response time over 20 times (Table 4); and

• A large-scale simulation verifying the effectiveness of the SyncM
attack on production microservices composed of thousands of
component microservices (Table 7).

2 THREAT MODEL AND MOTIVATION
2.1 Performance Vulnerability of n-Tier vs.

Microservices
In traditional web applications with the monolithic n-tier archi-
tecture (see Fig. 2a), the business logic is tightly-coupled, creating
strong dependencies between consecutive tiers. Due to the mono-
lithic role of each tier, if one tier experiences performance anomalies,
the entire system will be impacted. The monolithic architecture
leaves a severe performance vulnerability that allows low-volume
DDoS attacks [42, 60] to target a single tier of the system and cause
significant performance degradation to the entire system.

Unlike the monolithic n-tier architecture, the microservices ar-
chitecture adopts lightweight container-based services that make
it more resilient to the existing low-volume DDoS attacks. Fig. 2b
shows the SockShop microservices benchmark [67]. The microser-
vices application is split into a set of loosely-coupled microser-
vice components, where each runs as an independent service, in-
teracting with other components through the classic RPC style
call/response [23, 41]. Once a component encounters performance
anomalies, the damage is limited to its local or the execution path
that the component is involved in. Thus, microservices applications
usually have better performance anomaly tolerance compared to
the monolithic n-tier systems [6, 37]. In particular, a production mi-
croservices (e.g., e-commerce like Alibaba) application may involve
thousands of components that constitute hundreds of execution
paths with complex inter-path dependencies [41]. This makes the
state-of-the-art stealthy DDoS attacks targeting a single component
(or tier) ineffective on microservices[3, 6]. Thus, how to cause per-
formance instability of the target microservices application while
still staying stealthy motivates our work.
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Figure 3: SyncM attack scenario and the system model. Each color means one type of attack HTTP requests, which have its
own execution path through the shared frontend gateway microservice.

2.2 Threat Model
We assume a SyncM attacker acts as a normal user accessing the tar-
get microservices application through public HTTP requests. The
attacker does not have prior knowledge about the internal imple-
mentation of the target, and the baseline workload from legitimate
users. As a normal user, the attacker can profile the microservices
application by sending different HTTP requests and accurately
observing the end-to-end latency of the respective requests. To
launch a SyncM attack, the attacker can recruit an army of bots to
synchronously send attack requests to the target systems.

2.3 SyncM Attack Scenario
A typical SyncM attack scenario is illustrated in Fig. 3. The attacker
adopts a Short-ON and Long-OFF pulsing style to send bursts of
mixed types of legitimate HTTP requests to the target. The Short-
ON period is typically on the order of milliseconds while the Long-
OFF can be multiple seconds, which guarantees both harmful and
stealth. The following sequence of events occurs during a Short-ON
period. (Event1) The attacker sends a burst of mix-type requests
to the target system over a short time (e.g., 50ms). (Event2) The
frontend gateway dispatches each type of request to its independent
execution path and creates a millibottleneck at the weakest compo-
nent along the execution path. (Event3) The millibottleneck in each
target execution path blocks the processing of incoming requests
at the bottleneck component, causing requests to fill up the local
queue (e.g., thread pool) and quickly propagate the queued requests
to its upstream components. (Event4) Queued requests from all
targeted execution paths converge at their shared gateway (See the
shared queue in Fig. 3b), leading to a superimposed queuing effect
in the gateway. (Event5) Requests from normal users encounter
the extra long queuing delay in the shared gateway, leading to a
long response time (e.g., order of seconds) that violates SLA.

The above attack scenario is stealthy in two ways. First, every
Short-ON period is followed by a Long-OFF period in the order of
seconds, in which the target system can cool down, clear up the
queued requests in the system, and return to a long normal state.
Second, the damage of the attack is due to the compound effect of
multiple synchronized millibottlenecks in independent execution
paths, where each millibottleneck itself is on a scale of milliseconds,
invisible by normal monitoring tools sampling at seconds (e.g.,
the finest granularity of Amazon CloudWatch [5] is 1-second). By
tuning attack parameters such as Short-On/Long-OFF periods and
the selection of attack requests, the attacker can effectively balance
the trade-off between performance damage and stealthiness.

Table 1:Measured long-tail latency problem in SocialNetowrk
application under the SyncM attack.

Setting
Avg. RT (ms) 95ile RT (ms) 99ile RT (ms) CPU (%)
Base. Att. Base. Att. Base. Att. Base. Att.

EC2-SN-7k 144 396 148 3104 161 4847 31 41
EC2-SN-12k 143 386 154 3018 169 5132 49 54
Azure-SN-4K 155 410 161 3271 175 4757 25 40
Azure-SN-9k 157 407 163 3265 177 4871 51 61

CloudLab-SN-5k 153 411 159 3396 192 5089 23 38
CloudLab-SN-11k 159 423 161 3277 207 4958 43 54

Base.: baseline without attacks. RT.: end-to-end response time.
CPU.: average CPU usage of a representative bottleneck component.

2.4 Measured Damage under SyncM Attack.
Table 1 summarizes the impact of the SyncM attack through a
representative microservice benchmark (SocialNetwork [19]) with
production settings deployed in three cloud platforms: Amazon EC2,
Microsoft Azure, NSF CloudLab. The setting EC2-SN-7k means the
cloud platform, the benchmark system, and the baseline workload.
The more detailed experimental setup is in Section 5.1. We compare
the 95th and 99th percentile response time of the target system
with and without SyncM attack, showing a significant long tail la-
tency problem caused by our attack. Such long tail latency problem
(e.g., 95th percentile response time > 3 seconds) is considered as
critical performance degradation by most e-commerce web and IoT
backend applications [16, 65, 76]. Meanwhile, CPU utilization of
bottleneck microservice components (column 9) is increased by less
than 15% under attack, which is far from saturation, creating an
illusion of “normal workload” for system administrators.

3 SYNCM ATTACK MODELING
In this section, we apply a well-tuned queuing network model to
numerically analyze the relationship between the attacking param-
eters and their impact on performance damage and stealthiness.
With the model, we also conduct a boundary analysis to understand
the limitations and how to address such limitations by adjusting
attacking parameters, given various attacking goals.

3.1 Attack Model
Queuing network models have been widely used in complex com-
puter systems for performance prediction [33, 76].We use a queuing
network to model microservices and analyze the performance im-
pact of SyncM attack as shown in Fig. 3. Table 2 summarizes the
model notations. As Fig. 3a shows, during the Short-ON period (𝐿)
the attacker sends a burst of mixed requests to attack multiple (𝑚)
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Table 2: Model parameters.

Param. Description

𝑄𝑖 the queue size for the 𝑖th component
𝐶𝑖,𝐴 the capacity of the 𝑖th component serving attack requests
𝐶𝑖,𝐿 the capacity of the 𝑖th component serving legitimate requests
_𝑖 the legitimate request rate for the 𝑖th component
𝑉 the total attack volume of an attack burst
𝐵𝑖 the attack rate for attacking 𝑖th execution path
𝐿𝑖 the attack length for attacking 𝑖th execution path
𝑇 the interval between every two consecutive attack bursts
𝑙𝑖 the time to fill up the queue of the 𝑖th component

𝑄𝑔𝑎𝑡𝑒𝑤𝑎𝑦 the gateway queue caused by an attack burst
𝑡𝑑𝑎𝑚𝑎𝑔𝑒 the extra delay for a legitimate request caused by an attack burst
𝑃𝑀𝐵 the length of a millibottleneck caused by an attack burst
𝑃𝐷 the period during which requests violate latency SLA
𝜌 (𝑇 ) the damage ratio during 𝑇 that requests violate latency SLA

𝐿𝑚𝑎𝑥,𝑖
the maximum attack length allowed for the 𝑖th execution path,

given a millibottleneck length boundary (e.g., 500ms)

𝑡𝑚𝑎𝑥,𝑖
the maximum latency that can be achieved by attacking

the 𝑖th execution path, given a millibottleneck length boundary

execution paths. After each Long-OFF period (𝑇 − 𝐿), the attacker
repeats the burst. Given a target execution path 𝑖 , we use 𝐵𝑖 to 𝐿𝑖
to denote the attacking rate and length respectively. For each burst,
the total attack volume is:

𝑉 =

𝑚∑︁
𝑖=1

𝐵𝑖 ∗ 𝐿𝑖 (1)

Each burst of mixed requests is to create synchronized millibottle-
necks on multiple execution paths, thereby leading to a superim-
posed queuing effect in the frontend gateway (Event1∼Event5 in
Section 2.3). We assume that the target execution paths do not over-
lap except for the gateway (Section 4.2 discusses how to find such
execution paths through profiling). The attack can be modeled in
two steps: (1) single-path attack modeling, and (2) multi-path attack
modeling with a superimposed queuing effect in the gateway.
Single-path attack modeling. Tail Attack [60] introduces a queu-
ing network to model a similar attack on a monolithic n-tier system.
It assumes a limited queue size of the gateway server so that a milli-
bottleneck in a downstream tier could degrade the performance of
the entire system once the gateway queue is full. In that case, the
gateway initiates request drops, leading to long TCP retransmis-
sions. However, this assumption does not hold on microservices
architecture for two reasons. Firstly, the loosely coupled microser-
vices have better performance anomaly tolerance as introduced in
Section 2.1. Secondly, the gateway of the modern microservices
architecture typically adopts the asynchronous event-driven in-
vocation, which can hold as many queued requests as the server
memory allows, thus no dropped requests by the gateway. Given
the change of the key assumption, we expand the queuing model
from Tail Attack to align with the microservices architecture in the
single-path attack modeling.

The communication between microservice components typically
adopts the RPC-style call and response [23, 41], creating the inter-
component dependency. Thus, one queued request in a downstream
component holds a pending queue slot (e.g., a thread waiting for
responses) in every upstream component along the execution path.

A millibottleneck in a downstream component can cause cross-
service queue propagation to its upstream components (Event3 in
Section 2.3) due to the inter-component dependency. To avoid queue
drop, an upstream component is usually configured to have a bigger
queue size than its downstream component (∀𝑖 ∈ {2, . . . , 𝑛}, 𝑄𝑖−1 >

𝑄𝑖 ). Then, for all microservices along the target execution path, the
time needed to fill up each queue is:

𝑙𝑛 =
𝑄𝑛

_𝑛 + 𝐵 −𝐶𝑛,𝐴
(2)

...

𝑙2 =
𝑄2 −𝑄3∑𝑛

𝑖=2 _𝑖 + 𝐵 −𝐶𝑛,𝐴
(3)

Where the queue fill-up time 𝑙𝑖 is derived using the available queue
slot of the 𝑖-th component (e.g., the numerator in Eqn. 2) divided
by the queue fill-up rate for the queue of the 𝑖-th component (e.g.,
the denominator in Eqn. 2).

Once all the queues are filled up in the downstream components
(𝐿 >

∑𝑛
𝑖=2 𝑙𝑖 ), the gateway continues to build a queue (𝑄𝑔𝑎𝑡𝑒𝑤𝑎𝑦 )

during the remaining attack "ON" period (𝑙𝑔𝑎𝑡𝑒𝑤𝑎𝑦 ).

𝑙𝑔𝑎𝑡𝑒𝑤𝑎𝑦 = 𝐿 −
𝑛∑︁
𝑖=2

𝑙𝑖 (4)

𝑄𝑔𝑎𝑡𝑒𝑤𝑎𝑦 = 𝑙𝑔𝑎𝑡𝑒𝑤𝑎𝑦 ∗ (
𝑛∑︁
𝑖=1

_𝑖 + 𝐵 −𝐶𝑛,𝐴) +𝑄2 (5)

Eqn. 4 shows that 𝐿 needs to be long enough to push requests to the
gateway if the millibottleneck occurs in the 𝑛-th component. Then
we calculate the total queued requests at the gateway in Eqn. 5.
Where 𝑙𝑔𝑎𝑡𝑒𝑤𝑎𝑦 is the build up time, (∑𝑛

𝑖=1 _𝑖 +𝐵−𝐶𝑛,𝐴) is the build
up rate, and 𝑄2 is queue slot occupied by downstream components.

When requests are queued up in the gateway (𝑄𝑔𝑎𝑡𝑒𝑤𝑎𝑦 ), they
will delay new incoming requests since the gateway is shared by
all the execution paths. Thus, we refer the time to drain out the
gateway queue as the damage queuing delay (or damage latency)
𝑡𝑑𝑎𝑚𝑎𝑔𝑒 , which can be calculated as:

𝑡𝑑𝑎𝑚𝑎𝑔𝑒 =
𝑄𝑔𝑎𝑡𝑒𝑤𝑎𝑦

𝐶𝑛,𝐴
(6)

The gateway queue drain out rate is determined by the bottleneck
component service rate (𝐶𝑛,𝐴) along the execution path. And the
delay time for new incoming requests from normal users is 𝑡𝑑𝑎𝑚𝑎𝑔𝑒 .
We use 𝑡𝑆𝐿𝐴 to denote the desired damage latency that violates
SLA (e.g., 𝑡𝑆𝐿𝐴=1s). To reach the desired damage latency 𝑡𝑆𝐿𝐴 , the
minimum queue fill-up time in the gateway 𝑙𝑆𝐿𝐴𝑔𝑎𝑡𝑒𝑤𝑎𝑦 can be derived
by combing Eqn. 5 and Eqn. 6. In this case, for each attack burst
𝐿, we can calculate the damage period 𝑃𝐷 , during which incoming
requests will have a delay longer than 𝑡𝑆𝐿𝐴 (thus violating SLA).
The damage length 𝑃𝐷 for each attack burst can be calculated as:

𝑃𝐷 = 𝐿 − (
𝑛∑︁
𝑖=2

𝑙𝑖 + 𝑙𝑆𝐿𝐴𝑔𝑎𝑡𝑒𝑤𝑎𝑦) (7)

Furthermore, since the attack burst repeats itself every 𝑇 -second
on average, the overall attack damage can be estimated as 𝜌 (𝑇 ) =
𝑃𝐷/𝑇 . Here 𝜌 (𝑇 ) means the damage ratio that legitimate requests
violate the latency SLA during the system runtime.
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Figure 4: Boundary analysis of feasible attack parameters. (a) and (b) show the limitations of attacking a single microservice. (c)
shows that SyncM attack can achieve a more ambitious damage goal (e.g., 𝑡𝑆𝐿𝐴 > 1𝑠) by attacking more execution paths.

Table 3: Constant parameters profiled in Sock Shop experi-
ments with 7000 normal users (baseline workload).

Component 𝝀𝑖 (#/s) 𝑸𝑖 (#) 𝑪𝑖,𝐴 (#/s) 𝑪𝑖,𝐿 (#/s)

Frontend 0 Infinite 5010 6531
Catalogue 0 250 3023 4439

CatalogueDB 514 100 457 1815
Cart 0 150 1969 3350

CartDB 271 100 585 1467
User 0 200 1359 2141

UserDB 213 100 2487 3101

On the other hand, to keep the attack stealthy, the millibot-
tlenecks created should be as short as possible. The period of a
millibottleneck caused by a burst is termed as 𝑃𝑀𝐵 and can be
derived as follows, which is adapted from Tail Attack [60]:

𝑃𝑀𝐵 = 𝐵 ∗ 𝐿 ∗ 1
𝐶𝑛,𝐴

∗ 1
(1 − (_𝑛 ∗ 1

𝐶𝑛,𝐿
)) (8)

Eqn. 7 and 8 reveal the relationship between attack parameters
(𝐿, 𝐵) and their attack impact (𝑃𝐷 , 𝑃𝑀𝐵 ). A longer attack burst
length 𝐿 will cause more damage 𝑃𝐷 to the target system (Eqn. 7).
On the other hand, a longer burst length 𝐿 also creates a longer
millibottleneck length 𝑃𝑀𝐵 (Eqn. 8), which may violate the stealthy
requirement. To address the single-path limitation and exploit the
damage of synchronized millibottlenecks, we propose multi-path
modeling for the microservices architecture.
Multi-path attack modeling. Assume that the target microser-
vices application has𝑚 execution paths; except for the shared gate-
way, all𝑚 execution paths do not share their bottleneck component.
Based on this assumption, an attacker can create at most𝑚 syn-
chronized millibottlenecks among those execution paths. Given
the restriction of each millibottleneck length (e.g.,𝑃𝑀𝐵 ≤ 500𝑚𝑠),
for each target execution path 𝑖 , the maximum attack burst length
𝐿𝑚𝑎𝑥,𝑖 can be derived from Eqn. 8. In this case, the maximum dam-
age latency created by the attack burst 𝐿𝑚𝑎𝑥,𝑖 is 𝑡𝑚𝑎𝑥,𝑖 . Only when
𝑡𝑚𝑎𝑥,𝑖 < 𝑡𝑆𝐿𝐴 , a multi-path attack is needed.

In a multi-path attack, the attacker sends out mix-type requests
in an attacking burst; each type creates a millibottleneck at the
bottleneck component of its execution path. In this case, the queues
of the gateway created by different types of requests are super-
imposed, and the delay in the gateway is also superimposed. One

challenge for the attacker is to find the minimum number of exe-
cution paths 𝐸𝑃𝑚𝑖𝑛 so that the superimposed delay in the gateway
can violate SLA:

𝐸𝑃𝑚𝑖𝑛∑︁
𝑖=1

𝑡𝑚𝑎𝑥,𝑖 > 𝑡𝑆𝐿𝐴 (9)

In general, the more damage is desired (𝑡𝑆𝐿𝐴 ↑), the more execution
paths (𝐸𝑃𝑚𝑖𝑛 ↑) are needed. Since the attack burst length 𝐿𝑚𝑎𝑥,𝑖 is
needed to cause the delay 𝑡𝑚𝑎𝑥,𝑖 on the path 𝑖 , the overall damage
length 𝑃𝐷 by each multi-path burst is:

𝑃𝐷 = 𝐿 −
𝐸𝑃𝑚𝑖𝑛∑︁
𝑖=1

𝐿𝑚𝑎𝑥,𝑖 (10)

In a real SyncM attack scenario, how to find 𝐸𝑃𝑚𝑖𝑛 independent
execution paths in the target microservices application is a chal-
lenge, which requires careful profiling of the target system (detailed
discussion in Section 4.2).

3.2 Boundary Analysis
The model in the previous section allows us to quantify the damage
𝑃𝐷 and stealthiness 𝑃𝑀𝐵 of our attack. On the other hand, if we
know the model parameters, we can also validate whether a certain
combination of attack goals (damage vs. stealthiness) is feasible or
not through boundary analysis.
Constant Parameters Estimation. We estimate the constants
of the model parameters (e.g.,_,𝑄,𝐶𝑖,𝐿,𝐶𝑖,𝐴) via system profiling
and configuration. For example, through profiling the service time
of each component of the microservices website SockShop [67]
(experimental setup in Section 5.1), we can derive the capacity of
each microservice. We choose three types of attack requests, each
targeting one specific execution path (see Catalogue, Cart, and User
in Fig. 2b). Other than the shared gateway, each execution path has
two microservice components (e.g.,<Cart, CartDB>). Table 3 lists
the model constants profiled from the SockShop website serving
7000 legitimate users as the baseline workload.
Attack Goal and Optimal Attack Parameters. Assume our at-
tack goals are to make the 95th percentile response time longer than
0.2 seconds (𝑡𝑆𝐿𝐴 = 0.2𝑠) and the millibottleneck lengths shorter
than 0.5 seconds. And we fix the interval as 3 seconds (𝑇 = 3s) be-
tween every two consecutive bursts. Then our attack goals can be
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formalized as two inequations: 𝑃𝐷 ≥ 0.15s 1 and P𝑀𝐵 ≤ 0.5s. Based
on Eqns. 7 and 8, we turn the two inequations to L as a function of
B, shown as follows. All other parameters are constants.

𝐿 >=
0.2 ∗𝐶𝑛,𝐴 −𝑄2∑𝑛
𝑖=1 _𝑖 + 𝐵 −𝐶𝑛,𝐴

+
𝑛∑︁
𝑖=2

𝑙𝑖 (11)

𝐿 <= 0.5 ∗ (1 − _𝑛 ∗ 1
𝐶𝑛,𝐿

) ∗
𝐶𝑛,𝐴

𝐵
(12)

Meanwhile, one obvious constraint is that the burst length should be
less than the target millibottleneck length (i.e., 𝐿 < 0.5s). Thus, how
to select the optimal attack parameters (B,L) becomes a nonlinear
optimization problem. Substituting the constant parameters from
Table 3 in Inequation (11) and (12), we get a unique feasibility zone
of the potential attack parameters (B,L) by attacking one execution
path (Catalogue), shown in Fig. 4a. Fig. 4b shows that once the attack
goal becomes more ambitious (𝑃𝑀𝐵 ↓ or 𝑡𝑆𝐿𝐴 ↑), the feasibility
zone narrows until no overlap, suggesting that there is no solution
to satisfy our attack goals by attacking only one execution path.
Fig. 4c shows the damage latency (𝑡𝑑𝑎𝑚𝑎𝑔𝑒 ) boundary of attacking
multiple execution paths while keeping 𝑃𝑀𝐵 = 500𝑚𝑠 at every
target execution path. It shows we need to target at least three
execution paths to achieve the damage goal 𝑡𝑑𝑎𝑚𝑎𝑔𝑒 > 𝑡𝑆𝐿𝐴 = 1s.

The above boundary analysis helps a SyncM attacker determine
whether a certain combination of goals can be achieved by adjusting
attacking parameters, given the target system state. Next, we will
show how to implement SyncM attack in real cloud settings.

4 SYNCM ATTACK IMPLEMENTATION
4.1 Overview
The analytical model in Section 3 characterizes the relationship
between the attack parameters and their impact (stealthiness and
damage) on the target. However, as external users, SyncM attackers
do not know the internal system parameters (e.g., Table 3). Our
analysis also does not consider more realistic conditions such as
dependencies among execution paths, variation of baseline work-
loads, and drifting of system state. For example, on peak shopping
days like Black Friday, online merchants see upwards of three times
more traffic than usual [2]; the optimal attack parameters could
become suboptimal over time in which the attacker either cannot
trigger millibottlenecks or cannot meet the damage goal. Although
it is impossible to get the internal system parameters or precisely
predict the variation of runtime system workload, we know how
the attack parameters impact attack results given the analytical
model. In this section, we present a feedback control framework
1The damage ratio 𝜌 (𝑇 ) = 𝑃𝐷/𝑇 = 0.15/3 = 0.05 here, suggesting 95ile RT > 0.2s.

Algorithm 1: Pseudo-code for control algorithm
1 procedure AdaptAttackParameters
2 𝑅𝑒𝑞𝑆𝑇 = EstimatedServiceTime;
3 𝑁𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑎𝑡ℎ = EstimatedNumberOfTargetPath;
4 𝐷𝑎𝑚𝐿𝑒𝑛 = EstimatedDamageLength;
5 𝑀𝐵𝐿𝑒𝑛𝑆𝑒𝑡 = EsimatedMBLengthOfTargetPaths;
6 if 𝐷𝑎𝑚𝐿𝑒𝑛 = 0 then
7 /∗𝑛𝑜𝑡 𝑒𝑛𝑜𝑢𝑔𝑡ℎ 𝑞𝑢𝑒𝑢𝑒 𝑎𝑡 𝑔𝑎𝑡𝑒𝑤𝑎𝑦, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝐵 ∗ /
8 𝐵 = 𝐵 + 𝑠𝑡𝑒𝑝𝐵;
9 else
10 /∗𝑓 𝑖𝑛𝑑 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑝𝑎𝑡ℎ𝑠 𝑡𝑜 𝑎𝑡𝑡𝑎𝑐𝑘 ∗ /
11 if 𝐷𝑎𝑚𝐿𝑒𝑛 < 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑚𝐿𝑒𝑛 then
12 𝑁𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑎𝑡ℎ = 𝑁𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑎𝑡ℎ + 1;
13 else if 𝐷𝑎𝑚𝐿𝑒𝑛 > 2 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑎𝑚𝐿𝑒𝑛 then
14 /∗𝑟𝑒𝑑𝑢𝑐𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑎𝑡ℎ𝑠 𝑡𝑜 𝑘𝑒𝑒𝑝 𝑠𝑡𝑒𝑎𝑙𝑡ℎ𝑦 ∗ /
15 𝑁𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑎𝑡ℎ = 𝑁𝑢𝑚𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑎𝑡ℎ − 1;
16 end
17 end
18 /∗𝑙𝑖𝑚𝑖𝑡 𝑚𝑖𝑙𝑙𝑖𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ𝑠 ∗ /
19 foreach𝑀𝐵𝐿𝑒𝑛 in𝑀𝐵𝐿𝑒𝑛𝑆𝑒𝑡 do
20 𝑔𝑎𝑝𝑀𝐵𝐿𝑒𝑛 = |𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝐵𝐿𝑒𝑛 − 𝑀𝐵𝐿𝑒𝑛 | ;
21 𝑠𝑡𝑒𝑝𝑉 = 𝑔𝑎𝑝𝑀𝐵𝐿𝑒𝑛/𝑅𝑒𝑞𝑆𝑇 ;
22 if 𝑀𝐵𝐿𝑒𝑛 > 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝐵𝐿𝑒𝑛 then
23 𝑉 = 𝑉 − 𝑠𝑡𝑒𝑝𝑉 ;
24 else if 𝑀𝐵𝐿𝑒𝑛 < 𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝐵𝐿𝑒𝑛 then
25 𝑉 = 𝑉 + 𝑠𝑡𝑒𝑝𝑉 ;
26 end
27 end

(using Kalman filter [30]) to dynamically tune the attack parameters
to fit the dynamic of baseline workload and system state.

The control framework mainly includes three parts: Profiler, Es-
timator, and Commander (see Fig. 5). We first use the Profiler to
profile the target system for the initialization of attack parameters.
Secondly, we adopt the Estimator to estimate two critical metrics:
the damage length 𝑃𝐷 and the millibottleneck length 𝑃𝑀𝐵 of each
target execution path to validate the fitness of attack parameters.
Finally, we use the Commander to coordinate the bots and dynam-
ically adjust attack parameters based on the collected feedback
metrics from the Estimator. The overall control is in Algorithm 1.

4.2 Profiler
The Profiler is used by attackers to find the appropriate independent
execution paths of the target system based on detailed system
profiling, which involves the following three steps.
Step 1: Profile supported execution paths via URLs. First, an
attacker can retrieve supported HTTP requests of the target system
by scanning the website [1, 38, 46, 70]. We adopt PhantomJS [53],
which is a script-based headless browser that can automatically
retrieve/analyze both static and dynamic requests supported by the
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Figure 6: Boxplot of the target critical path response time
when it conducts pair-wise dependency testing with other
critical paths. We use SVM to determine the cases with signif-
icantly larger response time than the baseline as dependent
(e.g., login and getCreator are dependent).

target website. For requests that require user input (e.g., username
and password), attackers need to prepare initial values for the asso-
ciate forms. By scanning supported HTTP requests, attackers can
collect public URLs, each corresponding to its specific execution
path on the server side. Non-valid requests (e.g., 404 Not Found) and
static requests (e.g., CSS file) are lightweight and served directly by
the frontend. Therefore, attackers do not consider such requests as
candidates to attack backend microservices.
Step 2: Select critical paths. After profiling all the supported
execution paths, the attacker needs to further identify the critical
paths of the target system in order to launch efficient attacks. In
our context, critical paths are referred to as the chain of invocations
among components with the longest end-to-end latency [54]. The
critical paths usually exist at those execution paths with the Critical
Components (weakest components, where millibottlenecks hap-
pen) in the system and have more chance to consume bottleneck
resources. Thus, attacking critical paths can achieve the desired
performance damage with fewer requests (thus stealthier). To iden-
tify the critical paths, we rank all the supported execution paths
according to their service time2.

Typically, the end-to-end latency of an HTTP request involves
three parts: the network latency between the client and the target,
the queuing delay, and the service time of microservices along
its execution path. When the target website is at low usage (e.g.,
midnight), the queuing time can be ignored [33]. The network
latency can be measured as the Round Trip Time (RTT) using either
Ping or a light HTTP request (e.g., only retrieving the header of a
web page). Thus, after eliminating the network latency and queuing
time from end-to-end latency, we can select critical paths based on
the ranking of service time of the candidate execution paths.
Step 3: Avoid dependency among critical paths. To create syn-
chronized but independent millibottlenecks among multiple crit-
ical paths (for stealthy purpose), SyncM attackers need to make
sure that the selected critical paths are independent. However, in a
production system, execution paths sharing the same bottleneck
component are common, both logically and physically. The logical
dependence is due to the shared microservice components among
multiple execution paths. For example, the Alibaba trace [41] shows
that 5% microservices (called “hotspot” microservices) are shared by

2Requests with the same URL but different parameters may have service time variations.
For such requests, we choose the one with the longest service time.
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Figure 7: Illustration of inferring millibottleneck length 𝑃𝑀𝐵

and damage length 𝑃𝐷 by Estimator

90% execution paths in their application. In this case, two selected
critical paths may logically share the same bottleneck component.
The physical dependency is due to the common practice of contain-
ers/VMs collocation for cost efficiency. Without careful profiling,
in both dependency scenarios, attacking two critical paths may
create repetitive millibottlenecks on the same resource (e.g., CPU),
lengthening the original millibottlenecks with the risk of detection
by normal monitor tools.

To determine whether two critical paths are independent or not,
we check whether a performance interference occurs when sending
attacking requests to both the critical paths in one small burst
(to avoid the superimposed queuing effect in the shared gateway).
Fig. 6 illustrates our pair-wise dependency testing for three sample
critical paths (login, getFollower, and writePost) of SocialNetwork
in three steps. (1) Baseline profiling. For each sample critical path,
we profile the baseline response time without mixing with other
request types in one burst. (2) Interference testing. We send a pair
of mixed critical paths in one burst. (3) Response time analysis. If
a pair-wise dependency exists, the response time of the sample
critical path should be significantly higher than the baseline due
to the performance interference by the other critical path. In our
experiments, we adopted a one-class Support VectorMachine (SVM)
classifier [57] to systematically detect the pair-wise dependency
between all the critical paths chosen in Step 2.

Applying the aforementioned three steps, a SyncM attacker can
evaluate every pair of candidate critical paths and select those
without dependency as the real attack targets. In this way, multiple
independent but synchronized millibottlenecks can be created to
keep the attack both stealthy and harmful.

4.3 Estimator
We adopt and extend the Estimator from Tail Attack [60] based
on the uniqueness of the microservices architecture. Tail Attack
assumes that the performance damage occurs when the target n-tier
system drops requests due to the limited queue size of gateway
and uses a prober to detect the request dropping period. However,
the target microservices of SyncM attack do not assume dropping
requests (details in Section 3.1), and the performance damage is
caused by superimposed queuing time in the gateway, thus requires
a different way to estimate the damage length 𝑃𝐷 .
Estimating millibottleneck length PMB. To stay stealthy, we
limit the millibottleneck length created by our attack (e.g., 500ms).
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Therefore, correctly estimating the millibottleneck length is impor-
tant. After sending a burst of attack requests, attackers can record
the start-time and end-time of each request. Assume the same type
of requests flows through the same execution path, we estimate
the millibottleneck length 𝑃𝑀𝐵 along the execution path by the
end-time of the last attack request subtracting the end-time of the
first request in an attack burst as shown in Fig. 7a. This estimation is
reasonable because the burst of requests will continue to consume
the bottleneck resource along the target critical path until the last
one. We note that such an estimation undercharges the service time
of the first request. Thus, it is a conservative estimation.
Estimating damage length PD. A SyncM attacker needs to es-
timate the damage length for each attack burst to evaluate if the
attack achieves the predefined damage goal. We define the requests
with response time violating SLA (e.g., > 1 second) as damage re-
quests and the period during which the damage requests continue
to occur as damage length.

To estimate the damage length 𝑃𝐷 of each burst, we use the
start-time of the last damage request subtracting the start-time of
the first damage request of the same burst as shown in Fig. 7b.
This estimation is reasonable because the attacking requests and
normal requests share the same frontend gateway (thus share the
same queue); if the measured latency of the attack requests violates
SLA, the normal requests during the same period (𝑃𝐷 ) also violate
the SLA. Once 𝑃𝐷 of each burst is estimated, we can estimate the
overall damage of the SyncM attack 𝜌 (𝑇 ) (e.g., 95ile RT > 1s), given
the interval 𝑇 between consecutive attack bursts.

4.4 Commander
After the profiling phase, the SyncM attackers initialize the attack
parameters and select independent critical paths to launch the at-
tack. With the Estimator, attackers estimate the feedback metrics
(𝑃𝑀𝐵 and 𝑃𝐷 ) to evaluate the success of an attack. The next step is
to dynamically adjust the attack parameters if the predefined goals
are not met. Specifically, the Commander adjusts the attack volume
𝑉 to guarantee the millibottleneck lengths 𝑃𝑀𝐵 created in all target
execution paths are always within the limitation (e.g., 500ms). Mean-
while, based on the feedback metric 𝑃𝐷 , the Commander adjusts the
number of target critical paths to achieve the predefined damage
goal. However, in production systems, many factors (e.g., varied
network latency, baseline workload, and drifted system state) can
bring uncertainties to the attack framework. All these uncertainties
lead to inaccuracy in the estimation and prediction.

To mitigate the negative impact of observing/prediction inaccu-
racy, we adopt the feedback-based control Kalman filter [30] which
is motivated by the implementation in Tail Attack [60]. It takes past
measurements into account for the variation of attacking states
and reduces the impact of processing noise. We apply the Kalman
filter to optimize the estimated 𝑃𝑀𝐵 and 𝑃𝐷 where the original
estimation may include noise. The detailed implementation is in
Appendix B. In short, using the Kalman filter, the Commander can
(a) calibrate the attack parameters at the 𝑘-th burst given the his-
torical results of all (𝑘 − 𝑖)-th bursts, (b) dynamically adjust the
parameters in the bots, and (c) automatically perform the attack.

To effectively send HTTP requests to the target, we assume that
the adversary bots are able to defeat or bypass CAPTCHAs. Many
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Figure 8: Topology of microservice benchmarks.

previous research efforts already provide solutions [22, 62, 68], and
are orthogonal to our research. For example, Searles et al. [59]
reported that ML-powered bots are faster and more accurate than
humans at solving CAPTCHAs.

5 CLOUD EVALUATION
5.1 SyncM Attack in Production Environments
To evaluate the feasibility of our feedback control framework, we
deploy two representative real-world open-source microservices
benchmarks in three popular cloud platforms under different base-
line workloads.
Experimental Setup. The two open-source microservices bench-
marks are: (i) SockShop [67], and (ii) SocialNetwork in DeathStar-
Bench [19]. SockShop is an e-commerce website that allows users
to view/buy different socks. SocialNetwork implements a broadcast-
style social network website with uni-directional follow relation-
ships, where users can create, view, and comment on posts. The
two websites contain 11 and 36 unique microservices, respectively,
as shown in Fig. 8. We use separate containers to deploy all mi-
croservices in Docker Swarm Mode, where each is hosted by one
container with dedicated vCPU.

Both websites are deployed on two commercial cloud platforms
(EC2 t2.small instances [4], Azure A1V2 instances [44]) and one
academic cloud platform (CloudLab c220g1 instances [49]). Each
container has 1 vCPU core and 2GB memory, which is considered
as the basic computing unit for commercial cloud providers. we
dedicate 4 containers for the gateway microservice of both websites
to avoid the gateway becoming the bottleneck.

We adopt the RUBBoS workload generator [56] to simulate nor-
mal user behaviors as the baseline workload for both websites.
Each user follows a Markov chain model to navigate among web
pages, with an average 7-second Poisson distributed thinking time
between every two consecutive requests. We control the baseline
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Table 4: Targeting “SockShop” with the attacking goals 𝑃𝑀𝐵 ≤ 500𝑚𝑠 and 95th percentile > 1s;
Targeting “SocialNetwork” with the attacking goals 𝑃𝑀𝐵 ≤ 500𝑚𝑠 and 95th percentile > 3s.

Setting
# of 𝑽 𝑷𝑴𝑩 Avg. RT (ms) 95ile RT (ms) 99ile RT (ms) Net. (MB/s) CPU (%)
EP. (#) (ms) Base. Att. Base. Att. Base. Att. Base. Att. Base. Att.

EC2-SockShop-7K 4 269 479 102 245 131 1415 152 3197 22 28 13 29
EC2-SockShop-15K 4 136 473 114 273 137 1561 149 3547 46 51 26 41
Azure-SockShop-6K 4 221 489 91 259 124 1433 136 2924 8 13 21 33
Azure-SockShop-13K 4 109 515 108 243 131 1429 155 3141 21 26 48 57

CloudLab-SockShop-3K 4 213 507 118 276 134 1354 146 3871 7 12 22 35
CloudLab-SockShop-9K 4 121 493 127 283 141 1418 151 4041 21 25 49 60

EC2-SocialNetwork-7K 6 201 478 144 396 148 3104 161 4847 29 37 31 41
EC2-SocialNetwork-12K 6 111 491 143 386 154 3018 169 5132 56 63 49 54
Azure-SocialNetwork-4K 6 238 501 155 410 161 3271 175 4757 19 29 25 40
Azure-SocialNetwork-9K 6 112 489 157 407 163 3265 177 4871 39 47 51 61

CloudLab-SocialNetwork-5K 6 171 491 153 411 159 3396 192 5089 22 30 23 38
CloudLab-SocialNetwork-11K 5 90 492 159 423 161 3277 207 4958 47 52 43 54

# of EP.: number of execution path under attack. 𝑽 : average attack volume per EP.
𝑷𝑀𝐵 : average millibottleneck length created by SyncM. Base. baseline without attacks. RT: response time.

Net.: average network traffic measured at gateway. CPU: average CPU usage of a representative bottleneck component.

workload by specifying the number of normal users with two crite-
ria: (1) all the bottleneck resource usage is less than 50% and (2) no
long-tail latency problem exists without attack. Meanwhile, in our
experiments we use a centralized way [24, 77] to coordinate and
synchronize a bot farm on 20 machines (one serves as a central-
ized controller), synchronized by the NTP service and can achieve
millisecond-level synchronization [27]3. Each bot uses a customized
httperf [28] to send attack bursts of HTTP requests, controlled by
our framework in Fig. 5.
Overall Results. Tables 4 show the corresponding attack parame-
ters and system resource utilization in real production settings for
SockShop and SocialNetwork, respectively. Given that SockShop
has fewer independent execution paths available (through profil-
ing) and also the e-commerce websites are typically more latency-
sensitive, we set a more strict requirement of system latency that
violates SLA for SockShop (95ile RT > 1s) than for SocialNetwork
(95ile RT > 3s). At the same time, we keep the same stealthy re-
quirement (𝑃𝑀𝐵 ≤ 500𝑚𝑠) for both websites. Columns 4 and 8
show that the attacker achieves the predefined stealthiness and
damage goals (Column 1). Columns 2 and 3 show the attack param-
eters controlled by our attack framework in each setting. Both the
number of execution paths and their corresponding attack volumes
need to be adapted according to each cloud setting. Comparing the
two applications, attacking SocialNetwork requires more execution
paths (6 on average) than Sockshop (4 on average) since the former
case requires higher damage latency that violates SLA than the
latter. Columns 11 to 14 show SyncM attack consumes less than 10
MB/s additional network bandwidth and 15% additional CPU of the
target website to achieve the damage goal. For example, the 95th
percentile response time increases over 6 times for Sockshop and
20 times for SocialNetwork under attack. We also conduct a white
box analysis with the internal metrics in Appendix C.
Evaluation under bursty baseline workload. To further eval-
uate the effectiveness of the control framework under workload
variations, we conduct experiments of the SockShop deployed in the

3More sophisticated decentralized synchronization approaches are available in [31, 32].
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(b) Attack volume for the target execution paths dynamically ad-
justed by our control framework.

0 120 240 360 480
300

500

700

P
M

B
 [

m
s
]

(c) Observed millibottleneck lengths of the target execution paths.

0 120 240 360 480
100

150

200

Timeline [s]

P
D
 [

m
s
]

(d) Observed damage length on the website.

Figure 9: Results of SyncM Attack on SockShop under a real-
world “Large Variation” workload trace.

CloudLab [49], using a real-world “Large Variation” bursty work-
load trace collected and categorized by Gandhi [20], as shown in
Fig. 9a. The baseline workload from normal users varies from 100
to 800 req/s during an 8-minute runtime experiment. Our attack
goal keeps the same as those in Table 4: achieving 95ile RT > 1s
while 𝑃𝑀𝐵 < 500ms. Fig. 9b shows the required volume for the
four target execution paths dynamically adjusted by the control
framework. By changing the volume according to the variation of
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Figure 10: A typical 3-layer DDoS defense strategy

Table 5: Cache rules for SocialNetwork in Cloudflare

Req. Name Description Cached

Static contents HTML, images, etc. Yes
Register/Login User credentials No
Compose post Create user post No
Read post Read user post Yes

Follow/unfollow Social connection No

baseline workload, the observed millibottleneck length is limited
to around 500ms as shown in Fig. 9c. Fig. 9d shows the damage
length 𝑃𝐷 caused by each attack burst observed by the framework,
which is about 160ms. Given that the average attack burst interval
𝑇 is 3 seconds, the overall damage ratio 𝜌 (𝑇 ) is 0.16/3 ≈ 5%, thus
the 95th percentile response time of normal users is longer than 1
second, reaching the predefined damage goal.

5.2 SyncM Attack under DDoS-Resilient
Systems

In this section, we evaluate the stealthiness of SyncM attack on
SocialNetwork under the radar of state-of-the-art DDoS-resilient
systems as shown in Fig. 10. This figure shows a typical 3-layer
DDoS defense strategy adopted by industry practitioners [21, 69],
ranging from Edge Cloud CDNs to typical IDS/IPS systems in the
gateway, and to auto-scaling strategies adopted by backend systems.
Experimental Setup. In the first defense layer, we adopt the Cloud-
flare [12] free-tier which aims to filter out potential attack traffic
to the backend. We set the caching level to standard, which tries to
cache all the static web contents. Cloudflare also provides protection
to mitigate DDoS attacks, such as bot detection and network-layer
protections (e.g., ACK floods, SYN-ACK amplification).

In the second layer defense, we deploy Snort [63], a rule-based
Open-Source IDS/IPS tool, at the gateway to identify abnormal
user behavior. We set alert rules following a popular user-behavior
model [50] to evaluate whether our attack behavior deviates from
it. The user-behavior model analyzed the distribution of normal
users’ interaction with a web server from a collection of web server
logs. Typically, the average inter-request interval per session is
less than 10 seconds. The RUBBoS workload generator also models
the inter-request interval per session as a Poisson process with an
average 7-second thinking time. To set an appropriate threshold for
normal clients, we calculate the 95% confidence interval to be (2.8,
14.4). We round the lower bound to 3 to reduce the false-positive,
which means that if a client sends two consecutive requests in less
than 3 seconds, the client is considered abnormal (i.e., bot).

In the third layer defense, we deploy the backend with AWS EC2
Auto Scaling. We use Amazon CloudWatch (the finest granularity
is 1-second [5]) to monitor the instances and manage auto-scale
rules on high or low CPU utilization. Specifically, we configure the

Table 6: Rule-based alerts. As the sampling period decreases,
legitimate users triggered more false positive errors while
bots didn’t trigger any alert under all sampling periods.

Alert Rule Parameters # Alerts Triggered

Threshold Sampling Period Bots Legitimate Users
1 3s 0 5832
5 15s 0 3417
10 30s 0 928
100* 300s 0 0
*: supported by AWS Shield [61], not effective here

system to scale up if CPU utilization exceeds 60% for one minute
and scale down if CPU utilization drops below 10% for one minute.

We conduct a 5-minute attack on SocialNetwork with 10k base-
line normal users by attacking six independent execution paths
during each burst. The millibottleneck lengths are limited to 500ms
and the interval time between bursts is set to 3s.
Results. By creating synchronized millibottlenecks at the six exe-
cution paths, we successfully penetrate the 3-layer defense shown
in Fig 10 and cause 95ile RT of normal users > 1 second. We discuss
the results under the 3-layer defense here.

First, Cloudflare CDNdoes not prevent SyncM attack from achiev-
ing its damage goal. This is because CDN is mainly used to cache
static content. Table 5 shows CDN cache rules for 5 representative
requests in SocialNetwork. Our profiling module in the control
framework (Fig. 5) can detect and rank all the requests for dynamic
content (e.g., POST requests) as candidate attack requests. How-
ever, adopting CDN indeed increases the difficulty to achieve our
predefined damage goal since part of normal users’ requests are
directly served by CDN regardless of the attack. For example, in
our SocialNetwork experiment, the overall web requests of normal
users served by CDN cache is 68%, suggesting that our attack can
only affect the performance of the rest 32% of dynamic requests.

Second, our deployed IDS/IPS system Snort does not trigger any
alarm. Columns 1 and 2 in Table 6 depict the threshold and the sam-
pling period configuration, which means that during a sampling
period, at most the threshold number of requests can be sent from
the same IP. Columns 3 and 4 show the triggered alarms by bots
and legitimate users, respectively. The results show that the bots do
not trigger any alarms while legitimate users trigger 5832 alarms
when the sampling period is 3s. As the sampling period increases,
the alerts triggered by legitimate users decrease, indicating that
a reasonable sampling period can reduce false positive errors. In
practice, to reduce the false positive, the sampling periods are usu-
ally set in the order of minutes. For example, the state-of-the-art
Cloud provider AWS Shield [61] adopts the rate-based rule with
a minimum sampling period of 5 minutes (300s). However, such a
long sampling period also gives a SyncM attacker more flexibility
to dynamically adjust its attack burst interval to keep stealthy.

Third, the auto-scaling mechanism in EC2 does not take any scal-
ing action during our SyncM attack. This is because CloudWatch
(also apply to Azure Monitor [45]) could not detect any millibot-
tlenecks since its finest supported monitor granularity is 1s [5]
while the triggered millibottleneck length is within 500ms. AWS
Simple Queue Service (SQS) [7] even collects and publishes queue
samples of the target system per minute by default. Furthermore,
the average CPU utilization of the most heavily used microservice
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Figure 11: The distribution of call depth in all simulated
invocation traces, which contain 1190 unique component
microservices and 343 unique execution paths.

under our SyncM attack is less than 50% (over 1-minute), shown in
Fig. 1, thus it does not trigger any auto-scaling action based on the
pre-defined rules. Therefore, the current auto-scaling mechanisms
do not work for our low-volume SyncM attack.

5.3 Large-scale Simulation
To further evaluate the scalability of SyncM attack on large-scale
microservices and avoid the ethics problem, we conduct a large-
scale simulation using the JMT simulator [8]4 based on a recently
released Alibaba invocation trace dataset [41]. The dataset contains
over ten billion call traces of production microservice applications
in 7 days from the Alibaba cluster. To limit the evaluation time,
we analyze a 30-min dataset to build the call graphs among 1190
unique microservices constituting 343 execution paths. The call
depths of the execution paths still keep a similar distribution as
that in the original dataset, shown in Fig. 11.

For the baseline workload, we use the same workload generator
as that in our experiments to simulate a Poisson arrival process
(Section 5.1). We use the same attack control framework (Fig. 5)
to profile all the independent execution paths and generate the
attacking bursts. The stealth goal also keeps the same: 𝑃𝑀𝐵 <

500𝑚𝑠 , while we evaluate the effectiveness of our attack under
three damage goals (95ile RT > 1s, 3s, and 90ile RT > 3s).
Results. Table 7 shows the damage goals and the attack parameters
under two representative baseline workloads: 200k and 600k nor-
mal users, under which the average CPU usage of the bottleneck
microservices is 13% and 37%, respectively. Compared to the exper-
imental results using small/medium-scale benchmark applications,
Column 3 shows that more execution paths are needed to achieve
the same damage goal for large microservices applications. For ex-
ample, 39 independent execution paths are needed to achieve 95ile
RT > 3s while only 6 are needed for the “SocialNetwork” application
(Table 4). This is because the large-scale application separates the
backend microservices into multiple clusters and different clusters
have dedicated gateways. The results show the required number
of execution paths that achieve corresponding damage goals to
the entire system (all clusters). Large-scale production applications
typically distribute user traffic geographically based on DNS ser-
vices to different clusters [13]. In such cases, a SyncM attacker may
choose to attack fewer execution paths and cause regional damage
or attack more execution paths in all the support regions and cause
full damage to the entire target.

On the other hand, Columns 8 and 9 show that only small attack
traffic (3% ∼ 24% of baseline) and extra CPU overhead (< 15%) are
needed to achieve various damage goals, suggesting significantly
4JMT is an open-source suite for modeling Queuing Network computer systems. It is
widely used in performance evaluation in distributed systems.

Table 7: Simulation results on large-scale microservices

Normal Damage # of EPs 𝑷𝑀𝐵 Tail latency (ms) Norm. CPU
users (#) Goal to attack (ms) 90ile 95ile 99ile traffic (%)

200k

0 (baseline) 0 0 109 173 211 1 13%
95ile RT > 1s 33 501 511 1043 2961 1.17 26%
95ile RT > 3s 43 511 2698 3136 3874 1.21 28%
90ile RT > 3s 47 509 3027 3440 4127 1.23 29%

600k

0 (baseline) 0 0 121 239 349 1 37%
95ile RT > 1s 29 491 561 1168 3163 1.05 46%
95ile RT > 3s 37 512 2719 3034 4077 1.09 48%
90ile RT > 3s 41 504 3104 3589 4157 1.12 49%

RT: response time. EP: execution path. 𝑷𝑀𝐵 : millibottleneck length.
Norm. traffic: normalized traffic. CPU: average CPU usage of victim components.

low attack cost compared to the traditional brute-force DDoS at-
tacks. In addition, comparing the two baseline workload cases (200k
vs. 600k), the simulation results also show that it is easier to achieve
the damage goal when the baseline workload is high. This is be-
cause high baseline workloads require less attack traffic to trigger
the same length millibottlenecks. This underscores the vulnerability
for potential attackers to target prominent e-commerce websites
during peak shopping events, such as Black Friday.

Overall, our simulation results validate that SyncM attack is
practical and scalable on large-scale microservices. To cause more
damage, the attackers need to select more independent execution
paths. By adjusting and coordinating a number of execution paths
to attack, attackers can dynamically set different damage goals
while maintaining a high degree of stealthiness.

6 POSSIBLE DETECTION AND DEFENSE
Detecting and defending SyncM attack is challenging because it
is difficult to accurately separate the attack requests from normal
ones. Tail Attack [60] proposes a statistic-based solution to address
this challenge by correlating critical resource usage spikes with
suspicious requests. Here, we adopt their detection and defense
strategies and apply them in microservices based on the unique
characteristics of SyncM attacks. We focus more on discussing the
limitations of the proposed strategies, with the hope to shed light
on more sophisticated solutions in the future.
Step 1: Millibottleneck cluster detection. The stealthiness of
SyncM attack relies on the very short duration of millibottlenecks
on the target bottleneck components. Since each burst may cause
multiple synchronized millibottlenecks (referred as millibottleneck
clusters), the first step is to detect the system-wide millibottleneck
clusters using fine-grained monitoring tools. Fig. 12a shows the
detection of synchronized millibottleneck clusters at four microser-
vice components in one SockShop experiment with 3500 legitimate
users, using 100ms monitoring granularity.
Step 2: Suspicious request identification. Once we detect a syn-
chronized millibottleneck cluster using fine-grained monitoring
tools, the millibottleneck cluster should match back to an attacking
burst. Fig. 12b shows the real-time throughput measured from the
gateway microservice. By correlating the occurrence of millibottle-
neck clusters in Fig. 12a with the throughput spikes in Fig. 12b, we
can infer the potential attack requests sent by SyncM attacker.
Step 3: Bots confirmation. After identifying suspicious requests,
the next step is to trace their IPs and discriminate the bots from
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Figure 12: Correlation between millibottleneck clusters and
suspicious requests.

normal users. In our attack scenario, the attacker aims to send at-
tack requests during the short millibottleneck cluster period while
keeping quiet during other periods to maintain a low access rate
for stealthy. Following this pattern, if we find IPs specifically send
requests during the millibottleneck cluster periods while keeping
quiet during other periods, we suspect such IPs are owned by bots.
Limitations.While promising, the above defense workflowmainly
has three limitations. 1○ It heavily relies on the capability of fine-
grained monitoring tools that can reliably detect millibottlenecks
caused by SyncM attack. However, it is well-known that fine-grained
resource monitoring (especially millisecond level) brings non-trivial
overhead, which explainswhy the default coarse granularity ofmod-
ern cloud monitoring tools such as Amazon CloudWatch [5], AWS
Simple Queue Service (SQS) [7], and Azure Monitor [45] is from
10-second to 1-minute. 2○While CPU contention is a typical source
of millibottlenecks in microservices [54], millibottlenecks may re-
sult from many other sources [17] that may not be detectable by
existing fine-grained resource monitoring tools (e.g., collectl [14]).
Thus, designing appropriate new resource monitors (e.g., lock con-
tention) for identifying new causes of millibottlenecks represents a
potential solution to defend against SyncM attack targeting differ-
ent resources. 3○ One hidden assumption of the defense workflow
is that the bots only send attack requests during the short “ON” pe-
riods while keeping quiet during the long “OFF” periods. However,
bots may attempt to send requests outside the “ON” periods to hide
their intention in practice. Thus, we need to further investigate
the bots detection techniques that can identify the bots’ behavior
patterns, which is for our future research.

7 RELATEDWORK
In this section, we review the most relevant work on low-volume
application layer attacks and defense techniques.
Low-volume Application layer DDoS Attacks. DDoS attacks in
this category focus on disrupting normal users’ services by a small
number of application-level attack requests [9, 10, 18, 24, 25, 47, 52,
55]. Some representative work includes: Regular Expression Denial
of Service (ReDoS) [64] searches for malicious input to match a
regular expression that takes unexpectedly long. Warmonger [72]
exploits limited IPs in serverless platforms to cause IP-blockages of
benign functions.

The closest to ours are LoRDAS [42] and Tail Attack [60], which
attack the target web service with regular ON/OFF strike waveform.

LoRDAS exploits the limited queue size of the frontend web server.
It aims to always occupy all the available queue slots (e.g., server
threads) of the target web server by sending bursts of attacking
requests at carefully crafted times to seize newly released queue
slots. Tail Attack only targets themonolithic n-tier architecture. The
hidden assumption of Tail Attack is that the performance anomalies
of one tier will degrade the entire system performance. With this
assumption, the Tail Attack only targets a single tier/component of
the system, which does not work on microservices. This is because
a microservices application is split into a large number of loosely-
coupled microservice components; attacking any individual does
not cause any significant damage to the overall system performance.
Instead, our SyncM attack exploits the vulnerability of multiple
synchronized cross-service millibottlenecks on carefully chosen
execution paths, which balances well between the attack damage
and the attack stealthiness.
Detecting/Defending Application DDoS Attacks. Most recent
research efforts focus on filtering out the malicious traffic from the
normal traffic [6, 39, 40, 73–75]. Some representative work includes:
Rampart [43] detects CPU-exhaustion DoS attacks using statistical
methods and function-level program profiling. Li et al. [37] propose
a mathematical model based on queuing theory to scrutinize the
behavior of suspicious requests and prioritize the resource allo-
cation for benign requests. However, all these solutions mainly
target DDoS aiming for a shutdown of the target and monitor re-
source usage using normal granularity (e.g., in seconds) tools, thus,
they are likely to fail to detect our SyncM attack which exploits
millibottlenecks (in milliseconds) in microservices.

8 CONCLUSION
We introduce the SyncM Attack, a novel low-volume performance
attack that targetsmicroservices cloud architecturewith high stealth-
iness. We show that multiple synchronized millibottlenecks along
different execution paths can cause a superimposed queuing ef-
fect in the shared gateway, leading to severe performance damage
that violates the SLA for typical e-commerce. To numerically an-
alyze the SyncM attack scenario, we model the attack based on
a well-tuned queuing network which helps derive optimal attack
parameters given pre-defined damage and stealthiness goals. We
also designed a feedback control framework that allows attack-
ers to dynamically optimize attack parameters to fit the baseline
workload and system state variations. Our experiments, both real
cloud-based experiments and large-scale simulations, demonstrate
that the SyncM Attack can achieve a wide range of damaging goals
(e.g., 95ile response time > 1 or 3 seconds) while remaining unde-
tected by state-of-the-art DDoS defense tools. Overall, our research
provides a valuable contribution by advancing our understanding
of novel and stealthy application layer DDoS attacks.
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A DERIVATION OF QUEUE OVERFLOW
Here we introduce the detailed derivation of queue overflow in a
single path during an attacking burst. For all microservices (𝑖 =
2, ..., 𝑛) along the execution path under attack, the time needed to

fill up each queue is:

𝑙𝑛 =
𝑄𝑛

_𝑛 + 𝐵 −𝐶𝑛,𝐴
(13)

𝑙𝑛−1 =
𝑄𝑛−1 −𝑄𝑛

_𝑛−1 + _𝑛 + 𝐵 −𝐶𝑛,𝐴
(14)

...

𝑙2 =
𝑄2 −𝑄3∑𝑛

𝑖=2 _𝑖 + 𝐵 −𝐶𝑛,𝐴
(15)

𝐿 is the total attack length during a burst. 𝑙𝑛 denotes the time
needed to fill up the queue in the n-th component where the milli-
bottleneck occurs. (_𝑛 + 𝐵 −𝐶𝑛,𝐴) is the queue fill-up rate. Once
the queue of n-th component fills up, requests start to queue in
its direct upstream (n-1)-th component, and so on to cause queue
propagation to the frontend gateway. (𝑙𝑛−1) denotes the time to fill
up the queue in the (n-1)-th component. Remember every queued
request in the n-th component holds a pending request queue slot
of its upstream component due to the RPC style call/response. Thus,
when the n-th component is full, the available queue slots of the
(n-1)-th component is (𝑄𝑛−1−𝑄𝑛). The queue fill-up rate in (n-1)-th
component is (_𝑛−1 +_𝑛 +𝐵 −𝐶𝑛,𝐴). This is because of two factors:
(1) all the requests arriving at a downstream component need to
go through every upstream component; (2) the overall service rate
of the entire execution path is determined by the capacity service
rate of the bottleneck component, which is 𝐶𝑛,𝐴 .

B THE IMPLEMENTATION OF KALMAN
FILTER

As introduced in Section 3, both 𝑃𝐷 and 𝑃𝑀𝐵 have a linear relation-
ship with the attack volume 𝑉 when we fix the attack rate 𝐵. The
linear relationships provide us with a firm theoretical foundation
for our control framework. Therefore, in control algorithm 1, once
we find the appropriate attacking rate 𝐵, we can tune the other at-
tacking parameters with the Kalman filter. For each group of attack
requests attacking one component, there is one measurement of
millibottleneck length. Let 𝑍𝑘 be the measurement of millibottle-
neck length 𝑃𝑀𝐵 in 𝑘-th burst. In Eqn. 8, 𝑃𝑀𝐵 is a linear function
of the volume 𝑉 of the group of requests. We define the process
model of the evolution of the state from time 𝑘-1 to time 𝑘 as

𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑣𝑘 (16)

where 𝐹 is the state transition matrix applied to the previous state
vector 𝑥𝑘−1, 𝐵 is the control-input matrix applied to the control
vector 𝑢𝑘 , and 𝑣𝑘 is the process noise vector that is assumed to be
zero-mean Gaussian with covariance 𝑄1. The measurement model
that describes the relationship between the state and the measure-
ment at the current time step 𝑘 is

𝑧𝑘 = 𝐻𝑥𝑘 +𝑤𝑘 (17)

where 𝐻 is the measurement matrix, and𝑤𝑘 is the measurement
noise vector that is assumed to be another zero-mean Gaussian
distribution with covariance 𝑄2. Given the series of measurement
𝑧1, 𝑧2, ..., and the information described by 𝐹 , 𝐵, 𝐻 , and𝑄s, Kalman
Filter can provide estimation of 𝑥𝑘 at time 𝑘 . Denoting 𝑥 (𝑘 |𝑘 − 1)
as an estimate of 𝑥 at time 𝑘 given the history observations to time
𝑘 − 1. We show the key steps in Kalman Filter as
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(a) One attack burst targeting four independent critical paths

(b) Millibottlenecks triggered at four selected critical paths

(c) Local queue quickly filled up at the bottleneck component

(d) Superimposed queueing effect at the shared gateway

(e) Normal users encounter long response time that violates SLA.

Figure 13: White box timeline analysis illustrating the se-
quence of events when the attacker attacks SockShop with
the setting “EC2-SS-15K” from Table 4.

Predict:

𝑥 (𝑘 |𝑘 − 1) = 𝐹𝑥 (𝑘 − 1|𝑘 − 1) + 𝐵𝑢𝑘−1 (18)

𝑃 (𝑘 |𝑘 − 1) = 𝐹𝑃 (𝑘 − 1|𝑘 − 1)𝐹𝑇 +𝑄1 (19)

Update:

𝐾𝑘 = 𝑃 (𝑘 |𝑘 − 1)𝐻𝑇 (𝑄2 + 𝐻𝑃 (𝑘 |𝑘 − 1)𝐻𝑇 )−1 (20)

𝑥 (𝑘 |𝑘) = 𝑥 (𝑘 |𝑘 − 1) + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑥 (𝑘 |𝑘 − 1)) (21)

𝑃 (𝑘 |𝑘) = (1 − 𝐾𝑘𝐻 )𝑃 (𝑘 |𝑘 − 1) (22)

where 𝑥 (𝑘 |𝑘 − 1) is the priori estimate and 𝑥 (𝑘 |𝑘) is the posteriori
estimate, 𝑃 (𝑘 |𝑘 − 1) is the priori error covariance and 𝑃 (𝑘 |𝑘) is
the posteriori error covariance. The noise covariance 𝑄 − 1 and
𝑄2 are the tuning parameters that attackers can adjust to get the
desired performance. In practice, attackers can estimate the two
noise covariances with mathematical tools (e.g., autocovariance
least-squares method [48]).

C WHITE BOX ANALYSIS UNDER ATTACK.
To better understand the internal impact of the SyncM attack on
the target system, we conduct a white box analysis to illustrate
the sequence of events that occurs during a Short-ON period as
described in Section 2.3 (Event1∼Event5). Fig 13 illustrates the
sequence of events when the attacker attacks SockShop with the
setting “EC2-SocialNetwork-15K” from Table 4. (Event1) Fig. 13a
shows the attacker sends a burst of 4-type attack requests to the
target system over a very short period of time. (Event2) Fig. 13b
shows each type of attack requests creates a millibottleneck on
its corresponding execution path of the target system. (Event3)
Fig. 13c shows the millibottleneck in each target execution path
quickly fills up the local queue (we set the size to be 100) at the
bottleneck component. (Event4) Fig. 13d shows queued requests
from all target execution paths converge at their shared frontend
gateway microservice, leading to a superimposed queuing effect
in the gateway (e.g., queued requests over 1600). (Event5) Fig. 13e
shows requests from normal users encounter long response time
that violates SLA (𝑡𝑆𝐿𝐴 = 1𝑠 here), due to the interference of the
superimposed queuing effect in the gateway. The white box analysis
clearly shows the attack burst is well controlled by our framework,
and both our attack goals (𝑃𝐷 , 𝑃𝑀𝐵 ) are achieved.
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