
Grunt Attack: Exploiting Execution Dependencies
in Microservices

Xuhang Gu† Qingyang Wang† Jianshu Liu† Jinpeng Wei‡
†Louisiana State University ‡University of North Carolina at Charlotte

Abstract—Loosely-coupled and lightweight microservices run-
ning in containers are likely to form complex execution depen-
dencies inside the system. The execution dependency arises when
two execution paths partially share component microservices,
resulting in potential runtime blocking effects. In this paper, we
present Grunt Attack – a novel low-volume DDoS attack that
takes advantage of the execution dependencies of microservice
applications. Grunt Attack utilizes legitimate HTTP requests
to accurately profile the internal pairwise dependencies of all
supported execution paths in the target system. By grouping and
characterizing all the execution paths based on their pairwise
dependencies, the Grunt attacker can target only a few execution
paths to launch a low-volume DDoS attack that achieves large
performance damage to the entire system. To increase the attack
stealthiness, the Grunt attacker avoids creating a persistent
bottleneck by alternating the target execution paths within their
dependency group.

We validate the effectiveness of Grunt attack through ex-
periments of open-source microservices benchmark applications
on real clouds (e.g., EC2, Azure) equipped with state-of-the-art
IDS/IPS systems and live attack scenarios. Our results show that
Grunt attack consumes less than 20% additional CPU resource
of the target system while increasing its average response time
by over 10x.

Index Terms—Microservices, DDoS attack, SLA violations

I. INTRODUCTION

Web applications are increasingly to have stringent latency

requirements. Many of these applications, like those at Net-

flix [42], Twitter [19], and Amazon [50], are user-facing,

latency-critical services that must maintain strict Service Level

Agreement (SLA) [20]. For example, a study by Amazon [34]

reported that every increase of 100 milliseconds in page load-

ing time is correlated to roughly 1% loss in sales. Similarly,

Google found that a 500ms additional delay in returning search

results could reduce revenues by up to 20% [33].

Meanwhile, web application architecture is gradually evolv-

ing from the traditional monolithic multi-tier-based to loosely-

coupled and lightweight microservices [38]. This trend is

due to the special advantages of the microservice architec-

ture in many aspects, such as fine-grained scalability, cross-

team development, friendly deployment, etc. However, decom-

posing the originally monolithic architecture into hundreds

to thousands of fine-grained microservices creates complex

internal communication dependencies among component mi-

croservices, causing significant challenges for performance

prediction and management [38], [46]. For example, to manage

performance and reason about system behavior, Google’s

recent paper [22] discussed how to explicitly track and con-

trol microservice dependencies. The combination of stringent

0
25
50
75

100
CPU Network Memory

U
til

iz
at

io
n

[%
]

(a) Resource usage

Large performance damage

Without attack Under Grunt attack

0 120 240 360 480 600
0

2

4 Avg. 95 ile

Timeline [s]

Re
sp

on
se

 T
im

e
[s

]
(b) End-to-end response time of all legitimate users

Fig. 1: System bottleneck resource utilization and response

time under Grunt attack. Metrics are collected every 1 second.

latency requirements and the complexity of internal depen-

dencies creates new vulnerabilities for attackers to exploit for

novel performance attacks.

In this paper, we present a novel low-volume DDoS attack—

Grunt attack—on microservices. The goal of the attack is

to cause significant performance damage (i.e., violate the

typical service-level agreement (SLA) for e-commerce) on the

target microservices application while keeping stealthy from

the state-of-the-art IDS/IPS systems. Grunt attack exploits

the dependencies of the runtime execution paths inside the

system. A typical execution path is triggered by an incoming

HTTP request, which traverses through a series of different

microservices to accomplish a transaction. For example, the

order execution path may involve inventory, pricing, and credit

card processing component services. The dependency between

execution paths arises when they share some component mi-

croservices. A recently released Alibaba trace [38] shows that

5% microservices (called “hotspot” microservices) are shared

by 90% execution paths in their application, showing that

execution dependency widely exists in a production system.

The pairwise dependency can be profiled through perfor-

mance interference analysis by sending two types of requests

simultaneously (see Section IV-C). Thus, all the execution

paths can be divided into multiple performance dependency

groups. There exists dependency among execution paths within

a dependency group while execution paths across dependency

groups have no dependency detected. Our hypothesis is that

attacking a few execution paths within a dependency group

will affect the performance of the entire group. By targeting

only a few execution paths from each dependency group, Grunt

attack can block/degrade the performance of the entire system.

115

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00025

A1 A2A

B

C

D

B1

C1

D1

B2 B3

A3 A4 A5

Timeline

(a) (b) (c)

A

B

C

D

A

B

C

Fig. 2: (a) Execution history graph of a request with root

span A, its children B and D. B further calls C. The red

blocks represent the critical path through the execution. (b)

Dependency graph of the request. (c) Dependency graph along

the critical path.

Compared to the well-understood brute-force DDoS attacks,

low-volume attacks are reported [7], [18], [45], [56] to pose a

greater security threat for business since these attacks tend to

go undetected while the damage persists for a long time. Some

well-known low-volume attacks includes Shrew attack [35]

and Slowloris [41] that exploit protocol weaknesses, low-rate

network layer DDoS attacks [26], [31], [32], [35], [40], and

flash crowds [29], [48]. The novelty of our Grunt attack is

on the exploitation of the new architecture-level weaknesses

of microservices: the complex internal dependencies among

execution paths, which enable a low-volume DDoS attack (a

few to tens of megabytes) that requires orders of magnitude

less traffic volume compared to traditional brute-force DDoS

attacks (in gigabytes [10]).

The most challenging task for launching an effective Grunt

attack is to design an attacking strategy for each dependency

group so that the attack can achieve the desired performance

damage (e.g., average latency > 1s) while keeping stealthy

from typical DDoS defense tools. To achieve this goal, we

first build a dependency model that characterizes the pairwise

dependency between every two execution paths based on the

location of their bottleneck microservice along each path:

parallel dependency and sequential dependency. Based on each

pairwise dependency type, we design an alternating attack

strategy by sending bursts of attacking requests to each exe-

cution path in turn so that the damage of each attacking burst

can be accumulated while the triggered millibottleneck length

in each execution path keeps short (e.g., ≤ 500ms), avoiding

detection by normal IDS/IPS tools. To fit the dynamics of

background workload and system state in real cloud environ-

ments, we develop a feedback control framework that can fast

adapt attack parameters to each dependency group. With the

guide of the proposed dependency model and the feedback

control framework, we validate that Grunt attack not only

achieves the expected latency damage goal but also escapes

the state-of-the-art DDoS detection mechanisms (Fig. 1 as an

example). In brief, we made the following contributions:

• The first low-volume DDoS attack towards microservices by

exploiting internal dependencies among execution paths;

• A dependency model that characterizes different dependen-

cies between execution paths. The model helps quantify the

impact of our attack based on queuing network theory;

• Practical approaches that help attackers identify the internal

Bottleneck
microservice

Critical path

User request

A

Users

D E

B C

F G

UM2

DM3 DM4DM1 DM2

UM1

(a) Execution blocking (b) Cross-tier queue blocking

Cross-tier queue overflow
from F blocks the load of C

Fig. 3: Blocking effects among different critical paths. We use

a dependency graph along the critical path to visualize the

critical path of a user request as in Fig. 2(c).

execution dependencies among different execution paths;

• A feedback control framework that allows attackers to

dynamically fit the variation of background workload and

system state; and

• Extensive real-world experiments that validate the practical-

ity of Grunt attack in production clouds (e.g., EC2).

II. MOTIVATION & THREAT MODEL

A. Blocking Effects in Microservice Calls

Microservice architecture introduces complex inter-service

execution dependencies by decomposing the monolithic design

of business logic into loosely coupled microservices, which

leads to a significant challenge in system performance: the

computational resource saturation in one service can block

the execution of many other services, leading to blocking
effects that this paper refers to. As a result, overloading only

a few well-chosen microservices can substantially degrade the

performance of an entire system. This motivates our work on

designing a stealthy low-volume DDoS attack.

1) Critical path of a user request: A user request, after

being sent to a gateway/entry service, triggers a series of

calls between related microservices. This can be represented

as either an execution history graph or a dependency graph.

For example, Fig. 2(a) shows the execution history graph of a

user request, and Fig 2(b) depicts its dependency graph. The

critical path is the longest chain of dependent tasks within a

dependency graph, which dominates the latency of the request.

In this paper, we extract the critical path of a dependency graph

to represent the execution of a request, as shown in Fig. 2(c).

2) Blocking effects within a critical path: Each call in

a dependency graph links two microservices: an upstream
microservice (UM) and a downstream microservice (DM).

Due to the execution of dependent tasks in a critical path, a

microservice may not perform the next task (e.g., call its DM

or reply to its UM) until receiving replies from DM. Therefore,

resource saturation on a microservice can block the execution

of itself and its UM and DM along the critical path.

3) Blocking effects across multiple critical paths: Blocking

effects can propagate across multiple critical paths, because

critical paths of different user requests may have overlapped

microservices (i.e., microservices shared by different user

116

…

Normal requests

…

Attacking dependency group n
…

Attacking dependency group 1

…

T1 T2

…

…

…

…

…

Dependency group 1

…

…

…

…

Dependency group n

Gateway

System snapshot at T1

…

…

…

…

…

Dependency group 1

…

…

…

…

Dependency group n

Gateway

System snapshot at T2

…

Targeted critical pathsUser request Bottleneck microservice Microservice under low utilization

Time Time

Fig. 4: Grunt attack scenario and system modeling. Attack requests trigger millibottlenecks alternatively among different

critical paths in a dependency group, causing persistent blocking effects that block the execution of all other paths in the same

dependency group, resulting in large response time problem.

requests), which is common in microservice architecture [38].

Firstly, when resource saturation occurs on an overlapped

microservice shared by multiple critical paths, it blocks both

its own request processing and the calls to its DMs. As a result,

the execution of all the critical paths that share the bottleneck

microservice will be blocked during resource saturation, which

is called execution blocking effect. For instance, in Fig. 3(a), if

microservice-B experiences resource saturation, it will block

the load of microservice-D and microservice-E, even though

they belong to different critical paths.

Additionally, when resource saturation occurs on a local

microservice of a critical path (i.e., not shared by other critical

paths), it can also block the execution of other critical paths.

This is because the resource saturation on the bottleneck

microservice will cause message queues and thread pools to

fill up. Once the local queues reach capacity, requests start to

overflow to the UMs, leading to a phenomenon called Cross-
Tier Queue Overflow [58]. As a result, subsequent requests on

the waiting UM will then be blocked, which is called cross-tier
queue blocking. For instance, in Fig. 3(b), if microservice-

F experiences resource saturation, it will block the load of

microservice-C once its queue overflows. Moreover, the load

of all DMs (e.g., microservice-G) will also be blocked due to

the queued requests at the UM (microservice-C). We analyze

the two blocking effects in detail in Section III.

B. Grunt Attack Scenario

A Grunt attacker behaves as a normal user who can ac-

cess the target microservice application through public HTTP

requests. The attacker can profile the target application by

sending different types of requests and recording the end-to-

end response time. To launch a Grunt attack, the attacker can

recruit an bots farm and send synchronized attacking requests

to the target microservice application.

Blocking effects across multiple critical paths occur when

the critical paths have overlapped microservices. Therefore,

we group those critical paths that can have blocking effects

mutually together, which is referred to dependency group.

A microservice application may have multiple dependency

groups and any overloaded critical path can cause blocking ef-

TABLE I: Measured long response time damage by Grunt

Setting Avg. RT (ms) 95ile RT Net. (MB/s) CPU (%)
Base. Att. Base. Att. Base. Att. Base. Att.

EC2-7k 106 1142 120 4231 29 41 21 36

EC2-12k 107 1256 137 4351 56 68 33 45

Azure-4K 109 1378 143 5017 19 33 23 35

Azure-9k 117 1163 159 4452 39 49 37 46

NSF-5k 110 1382 164 4323 22 33 21 36

NSF-11k 104 1249 177 4436 47 54 43 58

Base.: baseline without attacks. Att. with attack.
CPU: average CPU usage of a representative microservice.

Net.: average network traffic at Gateway. RT. end-to-end response time

fects on all the other critical paths within the same dependency

group. Through systematic profiling (details in Section IV-C),

a Grunt attacker can infer the existence of blocking effects

among different critical paths (via external HTTP requests)

and divide them into separate dependency groups.
We assume a Grunt attack scenario on a microservice appli-

cation that adopts Remote Procedure Communication (RPC)

among different microservices as illustrated in Fig. 4, where

the attacker tries to create persistent blocking effects that

degrade the system performance. For each dependency group,

the attacker employs pulsing bursts of attacking requests

consisting of mixed types to mimic legitimate HTTP requests.

Each burst is used to overload one critical path, creating a very

short bottleneck or millibottleneck (with sub-second duration)

on the weakest microservice within the path. The purpose

is to create a blocking effect that blocks the execution of

all other paths in the same dependency group. Before the

millibottleneck disappears and the system cools down (after

an interval period), the attacker selects a different critical path

from the same dependency group to launch another burst.

The purpose again is to create another blocking effect that

maintains the blocking of all other paths’ execution. The attack

pattern continues during the whole attack period, creating

persistent blocking effects that block the execution of all the

critical paths in the targeted dependency groups, resulting in

a very long response time for all legitimate requests.

C. Measured Damage under Grunt Attack.
Table I illustrates the impact of Grunt attack on SocialNet-

work [23]: an open-source benchmark for cloud microservices.

117

TABLE II: Model parameters.

Param. Description

Qi the queue size for the ith microservice

Ci,A the capacity of the ith microservice serving attack requests

Ci,L the capacity of the ith microservice serving legitimate requests

λi the legitimate request rate for the ith microservice

B the attack request rate during an attack burst

V the attack volume of an attack burst

L the attack length of an attack burst

Ii the interval between every two consecutive attack bursts

li the time to fill up the queue of the ith microservice

QB the queue length caused by an attack burst in the system

tdamage the time to clear up the damage queue caused by an attack burst

tD the time to clear up the damage queue caused by multiple bursts

tmin the minimum latency persistently created by multiple bursts

PMB the length of a millibottleneck caused by an attack burst

The bechmark application is deployed in three popular cloud

platforms: Amazon EC2 [13], Microsoft Azure [14], and NSF

CloudLab [4]. A sample setting EC2-3k means the cloud

platform and baseline workload of legitimate users. More

details about the experimental setup can be found in Section V.

We compare the system response time perceived by normal

users with and without Grunt attack, showing a significant per-

formance degradation. For example, under all settings, without

attack, the average response time of the target application

is just about 100ms and the 95th percentile response time

is less than 200ms. With the attack, the average and the

95th percentile response times turn to more than 1 and 4

seconds, respectively, averagely degrading more than 10 times

and 20 times. On the other hand, the extra CPU and network

bandwidth overhead under attack is less than 15% and 10%,

respectively. Such small extra overhead will stay undetected

under the radar of state-of-the-art DDoS defense systems.

III. GRUNT ATTACK MODELING

In this section, we study a theoretical queuing network

model to characterize the relationship between the attacking

bursts and their impact (stealthiness vs. latency damage) on the

target microservices system. Such a relationship contributes to

the design of the feedback control framework in Section IV.

We first model how a blocking effect could be triggered

by a single burst and quantify its system impact from two

perspectives (i.e., system latency and millibottleneck length).

Then, we model how persistent blocking effects could be

triggered when attacking a dependency group. Finally, we

study how an attacker could select candidate critical paths to

achieve attacking goals with minimum volume by exploiting

the execution dependencies between critical paths.

Table II shows the notations of the parameters. The queue

size of each microservice represents the number of server

threads. Because of the inter-service communication depen-

dency (call/response RPC), one queued request in a DM holds

a queue slot in every UM. Fig 4 shows that the attacker sends

bursts of mixed requests (each with a rate B) to launch a

Grunt attack to every dependency group. We use L to represent

the burst length and I to represent the interval between two

successive bursts.

Attack burst
Shared upstream

microservice

(a) Execution blocking effect. Millibottleneck on shared upstream
microservice blocks other paths directly.

Attack burst
Shared upstream

microservice

(b) Cross-tier queue blocking effect. Millibottleneck needs to fill up
downstream queues to block other paths.

Fig. 5: Blocking effects by a single burst.

A. Blocking effects by a single burst

When an attacking burst overloads a critical path, it blocks

the execution of other critical paths once a blocking effect is

created. We use the latency and millibottleneck length caused

by the burst to quantify the impact of the burst.

Latency created by a burst. An execution blocking effect

exists when the millibottleneck occurs on a shared UM, as

Fig. 5a shows. The millibottleneck can block all critical paths

that share the bottleneck microservice. Given the burst length

L and rate B, we can calculate the total queue that will be

created by the burst as:

QB = (L) ∗ (λi +B − Cs,A) (1)

where (λi + B − Cs,A) is the queue build-up rate, which is

the sum of the incoming request rate from normal users (λi)

and attacker (B) subtract the service rate of the bottleneck

microservice (Cs,A).

On the other hand, a cross-tier queue blocking effect exists

when the millibottleneck causes cross-tier queue overflow

from the bottleneck DM to the shared UM (see Fig. 5b).

Therefore, we calculate the total time needed to fill up all

the DMs before we derive the total queue length that can be

created. If the n-th microservice is the bottleneck, then the

time needed to fill up n−th microservice is:

ln =
Qn

(λn +B − Cn,A)
(2)

where Qn denotes the queue size of the n-th microservice and

(λn + B − Cn,A) is the queue fill-up rate, which is the sum

of incoming request rate from normal user (λn) and attacker

(B) subtract the service rate of the bottleneck microservice

(Cn,A). Similarly, we can calculate the time needed to fill up

other DMs. Given the attacking parameters (L and B) of a

burst, we can calculate the total queue length that is created

after filling up all the DMs as:

QB = (L−
n∑

i=s+1

li) ∗ (
n∑

i=s

λi +B − Cn,A) (3)

where (L − ∑n
i=s+1 li) is the total time to build up queues

and (
∑n

i=s λi +B − Cn,A) is the build up rate.

Finally, we calculate the overall latency that can be created

by the burst based on the queue length. We assume the overall

118

service rate to process the queued requests is limited by the

bottleneck microservice during the bottleneck period, which is

(Cn,A). Thus, we consider the time to process the total queued

requests as the damaged latency by the burst:

tdamage =
QB

Cn,A
(4)

Then all the requests that access the target dependency group

during the millibottleneck period will have a response time

greater than (tdamage).
Millibottleneck length caused by the burst. During the pe-

riod of processing the attacking burst, a millibottleneck occurs

on the bottleneck microservice. The period of a millibottleneck

is termed as millibottleneck length (PMB) and can be derived

as follows, which is adapted from Tail Attack [51].

PMB = B ∗ L ∗ 1

Cn,A
∗ 1

(1− (λn ∗ 1
Cn,L

))
(5)

B. Persistent blocking effects in a dependency group
A single burst only causes limited damage since the block-

ing effect will disappear once the burst has been processed.

Therefore, Grunt attack tries to create persistent blocking

effects at all the targeted dependency groups. Here we discuss

the trigger condition of persistent blocking effects within

a dependency group, which can be extended to attacking

multiple dependency groups.
Assume that the targeted dependency group has m critical

paths. We first use a mixed burst targeting all m critical paths

to create multiple blocking effects and quickly build up queues

at the shared UM. After that, each time we target one critical

path to maintain the blocking effects.
Given m targeted critical paths (i = 1, 2, ..,m) with at-

tacking parameters (Li, Bi), we can calculate the maximum

damage latency tD that can be created by multiple bursts:

tD =
m∑

i=1

tdamage,i (6)

where tdamage,i is the damage latency created by millibottle-

neck at i-th execution path, which is calculated from Eqn. 4.
After the interval I0, additional bursts are used to maintain

blocking effects and cause persistent latency delay. Then the

remaining damage latency after the interval I0 is:

tmin = tD − I0 (7)

For any burst (i = 1, 2, ..,m) with an interval time Ii to

maintain the blocking effects, the remaining damage latency

to be the same after each interval:

tmin = tmin + tdamage,i − Ii (8)

Then, during the process, all the requests accessing the target

dependency group will have a response time greater than tmin.

The required interval of each burst to maintain the latency can

be calculated with:

Ii = tdamage,i (9)

where the interval Ii for i-th burst serves as the condition of

maintaining the blocking effect created by the previous burst.

Microservice under low usage

Bottleneck microserviceB

Critical path

Req. a B

BReq. b

(a) Parallel dependency. The re-
quests a and b have different bot-
tleneck microservices while they
share an upstream microservice.

B
B

Req. a

Req. b

(b) Sequential dependency. The
bottleneck microservice of a is
upstream of the bottleneck mi-
croservice of b.

Fig. 6: Pairwise execution dependencies

C. Attacking a dependency group with minimum volume

Given all the critical paths within a target dependency group,

critical paths may have very different damage impacts with the

same attacking volume (L∗B). For example, attacking a criti-

cal path can block the execution of other critical paths directly

if an execution blocking effect is triggered, however, it needs to

fill up all DMs to block other critical paths if a cross-tier queue

blocking is triggered. Therefore, to attack a dependency group

with minimum volume (e.g., choosing those critical paths can

cause more damage), an attacker needs to know the blocking

effects that can be triggered by the critical paths. To help an

attacker understand such dependency relationships, we first

define the pairwise execution dependencies between critical

paths. Then we theoretically discuss the priority of choosing

critical paths based on the pairwise execution dependency.

Definition I. Two critical paths have a parallel dependency if

they have different bottleneck microservices while they share

one or more UMs (see Fig. 6a). In such a dependency, a critical

path can trigger a cross-tier queue blocking effect to block the

execution of the other critical path.

Definition II. Two critical paths have sequential dependency
if the bottleneck microservice of one critical path is upstream

of the bottleneck microservice of the other critical path (see

Fig. 6b). In this dependency, the “upstream” critical path (i.e.,

req.a in Fig. 6b) can trigger an execution blocking effect. In

contrast, the “downstream” critical path (i.e., req.b in Fig. 6b)

can trigger a cross-tier queue blocking effect to block the

execution of the other path.

Priority of choosing candidate critical paths. Given the

pairwise dependencies in a dependency group, an attacker can

rank the critical paths when choosing candidate critical paths

for attacking. Based on the definition of pairwise execution

dependency, the “upstream” critical path in a sequential de-

pendency can always trigger an execution blocking effect over

the other critical path, which can block the execution of other

critical paths directly without filling up DMs. Therefore, such

“upstream” critical paths have a higher priority when choosing

the candidate critical paths. On the other hand, those critical

paths that trigger cross-tier queue blocking effects need to fill

up DMs to block the execution of other critical paths, we

rank them by the volume (L ∗ B) to trigger the same length

of millibottleneck (i.e., PMB = 500ms). The request with

a lower volume has a higher priority at the same level (for

stealthy). Here we discuss how an attacker could rank those

119

H
T

T
P

re
q.

Bots

,

Commander

Profiler

Monitor

Error signal, ,

Dependency groups

Targets (s,

ms)

Target
Microservices

Legitimate UsersLong response time

Fig. 7: Feedback control Framework

critical paths in a dependency group based on the pairwise

execution dependencies. We introduce how an attacker can

estimate the pairwise execution dependencies in practice using

a blackbox profiling approach in Section IV.

In summary, the theoretical model gives us a firm foundation

to design a feedback control framework that dynamically

tunes the attacking parameters with the drift of system states.

Specifically, tdamage and PMB have a linear relationship with

the attacking burst length L when we fix the burst rate B.

The linear relationship model can be used by the Kalman

filter control foundation to tune the attacking parameters in

real attacking scenarios. In the next section, we introduce how

an attacker can estimate millibottleneck length and damage

latency and use them as the feedback control input to tune

attacking parameters in real attacking scenarios.

IV. ATTACK IMPLEMENTATION

A. Overview

The numerical analysis shows the theoretical relationship

between the attack parameters and their impact on the tar-

get dependency groups. However, as external users, Grunt

attackers do not know the internal system parameters and

microservices architecture. In addition, the previous analysis

does not consider more realistic conditions, such as variations

of system state and baseline workloads. In this section, we

present a feedback control framework to dynamically tune the

attacking parameters with the drift of system states as illus-

trated in Fig. 7. To evaluate the fitness of attacking parameters,

we design a Monitor Module which estimates the system

impact (e.g., damage latency tmin and millibottleneck length

PMB) caused by Grunt attacks in Section IV-B. To infer the

dependency groups, we design a blackbox Profiler Module to

profile the pairwise execution dependencies between critical

paths from the perspective of external users. Based on the

pairwise execution dependencies, we can construct the full de-

pendency groups to help attacks select candidate critical paths

for attacking in Section IV-C. Finally, to dynamically adapt the

attacking parameters with the dynamic of system states, we

design a control Commander Module with feedback control

tools (i.e., Kalman filer [30]) in Section IV-D.

B. Monitor Module

Estimating millibottleneck length. To avoid being detected

by normal resource monitoring tools (i.e., with 1s granularity),

Req. 1
Req. 2
Req. 3

Req. n
…

Time

start end

Fig. 8: Infer PMB by the last attack request’s end time

subtracting the first attack request’s end time within a burst.

Grunt attacks limit the millibottleneck length (i.e., PMB <
500ms) created in each critical path. Therefore, we need to

correctly estimate the millibottleneck length practically from

the perspective of external users. After sending a burst of

attacking requests to the target, the attacker can record the

start-time and end-time of each request. Assume the same type

of requests flow through the same critical path and consume

the same bottleneck resource, we estimate the millibottleneck

length PMB along the critical path by the end-time of the last

attack request subtracting the end-time of the first request in

an attack burst that targets the path, as shown in Fig. 8. This

estimation is reasonable because the burst of attack requests

will continue to consume the bottleneck resource until the last

one. We note that such a way is a conservative estimation

since we undercharge the service of the first request. The real

PMB could be shorter than the estimation.

Estimating damage latency. To quantify the damaging im-

pact, we estimate the damage latency (tmin) by the average

end-to-end response time of requests in each burst. Through

the modeling analysis in Section III, each burst can cause

a blocking effect on all the critical paths in the dependency

group. Persistent damage happens when additional bursts can

maintain the blocking effects during the attacking period.

We update tmin after each burst to estimate the success of

persistent damage dynamically.

C. Profiler Module

The profiler first finds all supported critical paths of the

target system, then identifies the pairwise execution depen-

dency (i.e., parallel and sequential) among them, and finally

constructs the dependency groups.

Extracting supported critical paths via public URLs. In

a microservices web application, each type of user request

traverses among multiple microservices and triggers one crit-

ical path. Hence, we can crawl the public URLs of the

target application to retrieve all supported user requests, and

we consider that each user request corresponds to a specific

critical path. Website crawler and scraping tools [1], [3] can

profile all supported HTTP requests of a target system. In our

implementation, we use similar approaches introduced in the

work [52] by using the script-based web browser PhantomJS

to automatically retrieve all public requests of a target website.

For some dynamic requests that require input, an attacker may

provide some initial values for associate input forms (e.g.,

user name and password). Non-valid or static requests are

120

Profiling burst

Cross-tier queue overflow block
type ‘b’ requests

a

b

(a) Millibottleneck triggered by type ‘a’ request burst (red) causes
cross-tier queue overflow to the shared UM and blocks type ‘b’
requests (blue). Performance interference exists.

Reduce volume of
type ‘a’ requests

No cross-tier queue
overflow and no blocking

a

b
Profiling burst

(b) Reducing the volume of type ‘a’ request burst (red) to avoid
cross-tier queue overflow. No performance interference.

Fig. 9: Performance interference testing in parallel dependency

scenario.

lightweight and served directly by the gateway or cache server.

Therefore, we do not consider such requests as candidate.

Identifying pairwise dependencies. Given any two critical

paths, we identify the dependency type by analyzing how

performance interference could happen among them. To test

the performance interference, we send bursts consisting of two

types (namely req. a and b) of requests with different volumes.

Then we check whether the changes in volumes would affect

the existence of performance interference in the following.

Parallel Dependency exists when the two critical paths have

different bottleneck DMs while sharing an UM (see Fig 6a),

which means that type a requests can block type b requests

only when the cross-tier queue overflow occurs on the shared

UM (cross-tier queue blocking). For example, Fig 9a shows the

case when sending a burst of profiling requests successively.

The millibottleneck in critical path a causes the local queue

to fill up and further causes cross-tier queue blocking. Then

the next incoming requests (type b) would be blocked at

the shared UM (performance interference exists). However,

if the millibottleneck in the path a does not cause cross-

tier queue overflow due to a low volume (no cross-tier queue

blocking), the incoming requests (type b) would directly reach

its DMs (see Fig 9b). Then we could not observe performance

interference. Hence, to profile parallel dependency, we send

a series of bursts of requests a and b. Then we gradually

increase the volume of requests (type a) from low to high

until we reach the maximum volume (e.g., PMB = 500ms).

During the process, (1) if no performance interference is

observed at any volume, we consider that the two execution

paths have no dependency; (2) if the existence of performance

interference varies with the volume, we consider that the two

execution paths have a parallel dependency relationship; (3) if

the performance interference exists persistently (does not vary

with the volume), we move to the next profiling step.

Sequential Dependency exists when the bottleneck microser-

vice of one critical path is an UM of the other critical path (see

Fig 6b). In contrast to the parallel dependency, the upstream

path a would always have performance interference (execution

Millibottleneck by type ‘a’ requests
blocks type ‘b’ directly

a

b
Profiling burst

(a) Type ‘a’ request burst (red) triggers the millibottleneck at the
shared UM and thus blocks type ‘b’ requests (blue). Performance
interference exists.

Swap sending
order

a

b
Profiling burst

Type ‘b’ requests reach its
bottleneck microservice first

No blocking when no
cross-tier queue overflow

(b) Switch the order of type ‘a’ and ‘b’ bursts. Type ‘b’ request burst
(blue) triggers the millibottleneck at a non-shared DM and thus does
not block type ‘a’ requests (red). No performance interference.

Fig. 10: Performance interference testing in sequential depen-

dency scenario.

0 50 100 200 400 800 1600
0

200

400

Volume of req. b

Re
sp

on
se

 t
im

e
[m

s] RT of req. a under
interference of req. b

PMB
constrain

0 50 100 200 400 800 1600
0

200

400

600

Volume of req. a

RT of req. b under
interference of req. a

PMB
constrain

(a) Existences of performance interference vary with burst volume,
indicating a parallel dependency between req. a and req. b.

0 50 100 200 400 800 1600
0

200

400

600

800

Volume of req. d

Re
sp

on
se

 t
im

e
[m

s] RT of req. c under
interference of req. d

PMB
constrain

0 50 100 200 400 800 1600
0

200

400

600

Volume of req. c

RT of req. d under
interference of req. c

PMB
constrain

(b) req. d always have performance interference to req. c,
indicating a sequential dependency between req. c and req. d.

Fig. 11: Pairwise dependency profiling. We consider the cases

with significantly larger response time than the baseline as the

existence of performance interference.

blocking effect) with path b no matter how much volume

was sent (see Fig. 10a). This is because the millibottleneck

triggered by path a happens on the shared UM, which can

block the next incoming requests (type b) directly. However,

if we change the order of profiling bursts (i.e., type b first and

a second), the first arrived requests (type b) would reach its

DMs, and we may not observe the performance interference

unless queue overflow occurs in path b (see Fig 10b). Hence,

to profile sequential dependency, again we send a series of

bursts of requests a and b with gradually increased volume. If

we observe one type of request (a) have persistent performance

interference over another (b), then it suggests a sequential

dependency among the pair of requests.

Fig. 11 illustrates the procedure of pairwise dependency pro-

filing. We use profiling bursts that consist of a pair of requests

to test the performance interferece. If performance interference

exists, the response time of the sample requests should be

121

significantly higher than no performance interference. Fig. 11a

shows the existence of performance interference between

requests a and b varies with profiling volume. It suggests a

parallel dependency between requests a and b. Fig. 11b shows

req. d always has performance interference to req. c, while req.

c needs a certain volume to have performance interference. It

suggests a sequential dependency (d is upstream).

D. Commander Module

Initialization of attacking parameters. Given the stealthiness

requirement (i.e., PMB ≤ 500ms), we initialize B and L
for each path in two steps. (1) Find the minimum burst rate

B. We fix the burst length L and use testing bursts with

the gradually increased B to find the minimum rate that just

triggers a millibottleneck. Since the response time of requests

barely changes when there is no resource saturation in the

system [57], we use the average response time of each burst

to determine whether a millibottleneck happens. (2) Find the

maximum burst length L. We fix B to the value from step (1)

and use testing bursts with gradually increased L to find the

maximum B that meets the stealthiness requirement. (3) Find

the minimum number of paths m to attack. We fix B and L to

the value from steps (1) and (2) for each path and use testing

bursts with gradually increased m to find the minimum m that

meets the damage requirement (i.e., tmin ≥ 1s).

Adapting attacking parameters. During the attacking pro-

cess, we dynamically adapt the attacking parameters with the

variation of system states based on the feedback metrics (tmin

and PMB) from the Monitor module. For each burst that

attacks a dependency group, we adapt L to always trigger the

desired millibottleneck length (i.e., PMB ≤ 500ms). Given a

dependency group with m critical paths, we adapt the interval

time I to always maintain the damage goal (i.e., tmin = 1s).

To mitigate the negative impact of observing/prediction inac-

curacy, we adopt the feedback-based control Kalman filter [30]

algorithm to optimize the estimation of PMB and tmin.

V. ATTACK EVALUATION

A. Ethical Considerations

To understand the impact of Grunt without raising ethi-

cal issues, we deploy the attack in controlled environments.

Specifically, we implement microservice applications on our

instances in different cloud platforms. All the offensive traffic

(e.g., HTTP requests) will only be sent to our applications.

And we only create resource contention on our instances

without affecting other cloud users due to the instance isolation

mechanisms provided by the Cloud platforms [47], [55].

B. Grunt Attack in Cloud Production Environments

We first deploy an open-source microservice application

SocialNetwork [23] in a Docker swarm cluster on two popular

commercial cloud platforms (Amazon EC2 [13], Microsoft

Azure [14]) and one academic cloud platform (CloudLab [4]).

SocialNetwork implements a broadcast type of social network

application, where users can post messages and follow other

users. All the cloud platforms are equipped with auto-scaling

nginx

user user-memcached

user-mongodb

social-graph-mongodb

social-graph-redis

home-timeline

user-timeline

home-timeline-mongodb

home-timeline-redis

user-timeline-mongodb

user-timeline-redis

post-storage

post-storage-mongodb

post-storage-memcached

compose-post

text url-shorten url-shorten-mongodb

user-mention

unique-id

media

social-graph

(a) Administrator’s view. Service Dependency graph of SocialNet-
work microservices [23]. Each element represents a microservice.

0 50 100 200 400 800
0

200

400

600

Volume of ReadHomeTimeline [#]

RT
 [

m
s]

GetFollower under
ReadHomeTimeline

0 50 100 200 400 800
Volume of GetFollower [#]

ReadHomeTimeline under
GetFollower

0 50 100 200 400 800
0

200

400

600

Volume of ReadHomeTimeline [#]

RT
 [

m
s]

ReadHomePost under
ReadHomeTimeline

0 50 100 200 400 800
Volume of ReadHomePost [#]

ReadHomeTimline under
ReadHomePost

0 50 100 200 400 800
0

200

400

600

RT
 [

m
s]

Volume of ReadHomePost [#]

GetFollower under
ReadHomePost

0 50 100 200 400 800
Volume of GetFollower [#]

ReadHomePost under
GetFollower

ReadHomeTimeline

GetFollower

ReadHomeTimeline

ReadHomePost

ReadHomePostGetFollower

Sequential

Sequential

Parallel

(b) Attacker’s view. Representative pairwise profiling results.

GetFollower ReadHomePost Following ReadUserPost WriteUserTimeline WritePost

ReadHomeTimeline ReadUserTimeline

ComposePost

ComposeMedia IdGenerate ComposeText ComposeCreator

UrlGenerateMentionUser

(c) Attacker’s view. Dependency groups constructed after pairwise
profiling. Each element represents a user request.

Fig. 12: Experimental results for SocialNetwork microservices.

features to handle workload variations. We also deploy one of

the state-of-the-art IDS/IPS systems Snort [8].

Experimental Setup. Fig. 12a illustrates the representative

call graph architecture of SocialNetwork. To emulate le-

gitimate user behavior, we employ a closed-loop workload

generator. Each user progresses through a Markov chain to

navigate web pages, with an average 7-second thinking time.

Each microservice is hosted within a container running on

a VM. With auto-scaling features enabled, these VMs are

initialized with 1 vCPU core and 2GB memory, representing

the basic computing unit for commercial cloud providers [51].

To implement auto-scaling for the backend cluster on cloud

platforms, we use CloudWatch [9] and Azure Monitor [43]

with a granularity of 1 second to monitor microservice re-

source utilization in EC2 and Azure, respectively. CloudWatch

and Azure Monitor are the default monitoring tools that enable

122

TABLE III: Attacking results as we set the attacking goals to

be PMB ≤ 500ms and average response time > 1s.

Setting Bot PMB avg. RT (ms) Net. (MB/s) CPU (%)
(#) (ms) Base. Att. Base. Att. Base. Att.

EC2-7K 269 482 106 1142 29 41 21 36

EC2-12K 196 499 107 1256 56 68 33 45

Azure-4K 243 452 109 1378 19 33 23 35

Azure-9K 178 458 117 1163 39 49 37 46

CloudLab-5K 314 473 110 1382 22 33 21 36

CloudLab-11K 229 443 104 1249 47 54 43 58

Bot: number of bots used to avoid rate-based detection.
PMB : average millibottleneck length created. RT: response time.

Net.: average network traffic measured at frontend. Att.: with attack.
CPU: average CPU usage of a representative bottleneck microservice.

the auto-scaling features in the two cloud platforms [11], [12].

In CloudLab, we use customized scripts to scale the backend

microservices with the Docker default resource monitor tool

Docker stats [6]. We configure the auto-scaling policy to scale

up if the CPU utilization exceeds 70% for 30 seconds and

scale down if the CPU utilization is less than 30% for 30

seconds on all the cloud platforms.

To evaluate whether the attackers’ behavior deviates from

normal users, we deploy Snort [8], a rule-based IDS/IPS

system, at the gateway. We follow a popular user-behavior

model [44] to set alert rules. The user-behavior model analyzed

the distribution of normal users’ interaction with a production

website from a long-term log data. To set an appropriate

threshold for the alert rule for normal clients, we calculate

the 95% confidence interval of the inter-request interval of the

legitimate users, which is 2.8 to 14.4. We round the lower

bound to 3 to reduce the false positive rate, which means if a

user session sends two consecutive requests with an interval of

less than 3 seconds, it will be considered as abnormal behavior.

We use a centralized way to coordinate and synchronize a

bot farm [26], which can achieve millisecond-level synchro-

nization. During an attacking burst, we use multiple bots to

send HTTP requests (each bot sends one request).

Overall results. We first use the Profiler to construct the

dependency groups of the target system. Fig. 12b shows three

representative pairwise profiling. Based on the pairwise profil-

ing, we construct three dependency groups for SocialNetwork

as shown in Fig. 12c. We then conduct 20-minute attacks under

different settings. Table III shows the corresponding attack

parameters and system status in various production settings.

The setting “EC2-7K” means the cloud platform (AWS EC2)

and the baseline workload (7000 concurrent normal users). We

set the damage goal as “avg. RT ≥ 1s” and stealthy goal as

“PMB ≤ 500ms” to illustrate the flexibility of Grunt attack.

Columns 3 to 5 show that we achieve the predefined attacking

goals under different system settings. Column 2 shows the

number of bots used per setting. Overall, the results show that

Grunt attack consumes less than 20% additional CPU while

increasing its average response time by 10 times.

Zoom-in white-box analysis. Fig. 13 shows the zoom-in time-

line of the system status of a dependency group in “EC2-12K”

in Table III. Fig. 13a shows the request rate from attackers and

normal users. Fig. 13b shows the millibottlenecks alternate

among different bottleneck microservices in every attacking

Normal users

100 101 102 103 104 105
0

2000

4000

compose-post user text
unique-id media

R
eq

. R
at

. [
#/

s]

(a) Request rate from attackers and normal users. Each burst creates
a millibottleneck at its corresponding bottleneck microservice.

Millibottlenecks alternate among different
components in every attack cycle

100 101 102 103 104 105
0

25
50
75

100

C
PU

 U
til

. [
%

]

(b) Millibottlenecks alternate among different bottleneck microser-
vices within the target dependency group. Only fine-grained moni-
toring (e.g., 100ms) can detect the millibottlenecks.

100 101 102 103 104 105
0

400

800

Q
ue

ue
 [

#]

(c) Persistent queue at the shared upstream microservice (i.e.,
compose-post) due to the persistent blocking effects.

100 101 102 103 104 105
0

2

4

6 95 ile RT avg. RT

Timeline [s]

R
T

 [
s]

(d) Large performance damage caused by the persistent queue at the
shared upstream microservice.

Fig. 13: Fine-grained runtime analysis of system resource

usage and response time for a dependency group under attack

in “EC2-12K”. Metrics are collected every 100 milliseconds.

Scaling-up threshold

100 101 102 103 104 105
0

25
50
75

100
compose-post user text
unique-id media

Timeline [s]

C
PU

 U
til

. [
%

]

Fig. 14: CPU utilization monitored by CloudWatch with a

granularity of 1s in the same experiment as shown in Fig. 13.

No scaling actions were triggered.

cycle, monitored with 100-ms granularity. Fig. 13c shows the

queued requests at the shared UM (compose-post). We

observe that multiple queued requests from different bottle-

neck microservices accumulate with each other at the shared

UM and cause persistent queuing delays. Fig. 13d shows the

average end-to-end response time of the legitimate users.

Stealthiness evaluation. We first find that the auto-scaling

mechanisms in all cloud platforms do not take any scaling

action during the attacking period. This is because the coarse-

grained cloud monitoring tools could not detect any millibot-

tlenecks since their finest supported granularity is 1s [2], while

the triggered millibottleneck length among different microser-

vices is less than 500ms. Fig. 14 shows the CPU utilization

of corresponding microservices monitored by CloudWatch

123

0 60 120 180 240
0

2000
4000
6000

R
eq

. R
at

e
[#

/s
]

(a) Request rate of baseline workload varies from 1000 to 6000 req/s.

0 60 120 180 240
0
1
2
3 Allocated CPU core

CPU Util.

A
llo

ca
te

d
C

PU
 c

or
e

[#
]

0
100
200
300

C
PU

 U
til

. [
%

]

(b) CPU utilization of compose-post microservice. The system
dynamically scales up and down to handle the workload variations.

0 60 120 180 240
0

400
800

1200

V
 [

#]

(c) Attack volume for targeting compose-post microservice dy-
namically adjusted by our Framework.

0 60 120 180 240
0

1

2

Timeline [s]

A
vg

. R
T

 [
s]

(d) Measured average end-to-end latency of normal requests.

Fig. 15: Results of Grunt attack on EC2 Cloud with Auto-

scaling under a real-world “Large Variation” workload trace.

We show the auto-scaling actions and corresponding attacking

volume on a representative microservice (compose-post)

in (b) and (c) as illustration.

within the same experiment in Fig. 13. The average CPU

utilization of the most heavily loaded microservice is less than

60%. Therefore, the current auto-scaling mechanisms could

not mitigate the performance damage caused by our Grunt

attack. Second, Snort could detect the denial of service (e.g.,

long response time) while not tracking the root causes. First,

Grunt utilizes low-volume legitimate HTTP requests. It neither

modifies the content of requests (e.g., header manipulation)

nor violates transaction protocols (e.g., TCP split handshake).

Thus, no content-based and protocol-based alerts are triggered.

Second, no resource saturation (e.g., CPU, network bandwidth)

is observed with normal granularity (i.e., 1s interval) monitor

tools. Thus, no resource-based alert is triggered. Finally, IPS

tools monitor the request rate per IP and quantify the interval

between two successive requests to detect bots. For example,

the AWS Shield limits the total number of requests per IP

every 5 minutes to block bots [13]. In our experiment, each

virtual bot only sends one request in a burst, and we tune

the interval of requests sent per bot to avoid bot blocking. In

practice, attackers can use lightweight requests to estimate the

threshold value before attacking and use conservative values

(e.g., use more bots) to avoid the rate-based rules [32], [49].

Evaluation under bursty baseline workload. To verify the

effectiveness of the Commander under the variation of baseline

workload, we conducted an experiment on EC2 under “Large

Variation” bursty workload traces from Gandhi [24] as shown

in Fig. 15a. The baseline workload from normal users varies

from 1000 to 6000 req/s. Fig. 15 shows the timeline of the

attacking parameters tuning under the “Large Variation” work-

load. The system dynamically scales up and down to handle

the workload variations. Here, we use compose-post mi-

croservice as an illustration since other targeted microservices

have a similar pattern. Fig. 15b captures 2 scale-up actions

and 1 scale-down action that happens on compose-post
with the variations of CPU utilization. Fig. 15c tracks the

attacking volume adjusted by the Commander, and Fig. 15d

monitors the average end-to-end latency of normal requests.

The Commander dynamically adjusts the attacking volume to

fulfill the damage goals with baseline workload variation and

system resource scaling.

Overall, the results substantiate the efficacy of our frame-

work in executing Grunt attack, successfully accomplishing

the predefined attacking goals in the cloud environments with

realistic workloads.

C. Grunt Attack in Live Attack Scenarios

We further design three live attack scenarios with unknown

microservice architectures to evaluate the profiling accuracy

and effectiveness of Grunt attacks. We conduct the experi-

ments with μBench [21], a factory of benchmarking microser-

vices tool. The tool can create customized microservice appli-

cations running on the Kubernetes cluster. The experiments are

conducted on CloudLab [4] subject to the following rules. (1)

We have engaged 6 independent volunteers from an academic

institution (LSU), where 3 volunteers behave as administrators

for microservices applications and the other 3 volunteers

behave as baseline workload managers to simulate legitimate

users. We provide each volunteer with access to the CloudLab

cluster of 30 m510 nodes. Each node has 8 CPUs and 64GB

of memory. (2) To simulate microservices applications at

different scales, the three administrators were instructed to

have different total numbers of unique microservices in their

applications. (3) Each administrator designs and deploys their

customized microservices. (4) The workload managers use the

same closed-loop workload generator as Section V-B to emu-

late the behavior of legitimate users. (5) For each application,

we conduct eight 20-minute attacks. During each attack, the

workload managers choose a number of baseline legitimate

users to emulate the system under different workloads.

To provide the ground truth of pairwise dependency, we

track the execution path of user requests with Jaeger Trac-

ing [28] and find the bottleneck microservice along the ex-

ecution path with Collectl [5], where the two tools have

been integrated into the μBench. Following each live attack,

we conduct an offline analysis to identify the dependency

relationship between each pair of user requests, establishing

them as the ground truth.

Results. Fig. 16 shows the Precision, Recall, and F-score

of the Profiler under 8 different baseline workloads for each

attack scenario. The lowest Recall occurs when the baseline

workload is very low, showing false negatives by the Profiler.

This is because we constrain the profiling volume to meet

124

Bench App. 2 Bench App. 3

Baseline Workload [#]
0 4k 8k 12k 16k

Precision Recall F-score

0 8k 16k 24k 32k

0

50

100

Re
so

ur
ce

U
til

. [
%

]
Bench App. 1

0 2k 4k 6k 8k
0

50

100

Pr
of

ili
ng

A
cc

ur
ac

y
[%

]

Fig. 16: Precision, Recall, and F-score of pairwise requests

profiling under different baseline workloads. The three appli-

cations deployed by different volunteers have 62, 118, and 196

unique microservices, respectively.

stealthy requirements (i.e., PMB < 500ms). A pair of critical

paths with parallel dependency may not have performance

interference when the profiling bursts cannot trigger cross-tier

queue blocking (not enough queued requests). Thus, we may

miss some parallel dependencies when the baseline workload

is low. On the other hand, the lowest Precision occurs when the

baseline workload is very high, showing false positives by the

Profiler. This is because the performance under the high base-

line workload is already unstable. A pair of critical paths with-

out dependency may have performance fluctuations caused by

high resource usage. Thus, we may wrongly consider some

non-dependent critical paths as dependent when the baseline

workload is high. In reality, the average resource usage of

modern cloud applications is usually less than 50% [57], where

our Profiler has high accuracy (i.e., F-score> 90%). Overall,

we confirm that the Profiler can achieve high accuracy when

the baseline workload is moderate within a realistic range.

Table IV shows the setting and corresponding system status

when attacking after the profiling. For each application, we se-

lect two representative baseline workloads (low and medium)

to show the results. The setting “App.1-1K” means the ap-

plication name and the baseline workload. Column 2 shows

the satisfaction of triggered millibottleneck lengths. Columns

3 and 4 show the response time of all normal users, which

validates the success of the damage goal. Columns 5 to 8 show

only small additional traffic and low extra resource overhead

to achieve the system-level damage, which are considered as

low costs compared to traditional DDoS attacks. Comparing

different workloads under the same application, the results

show that it is easier to achieve the attacking goal when

the baseline workload is high. This is because the bottleneck

resource is already under high usage during the high baseline

workload, which requires less effort from attacking requests

to trigger the same blocking effects on those critical paths.

In summary, the live attack experiments validate that Grunt

attack is also effective on different scale microservices. Com-

pared with small-scale applications, large-scale ones have

even less bottleneck resource overhead. This is because large-

scale applications usually have more critical paths (thus more

different bottleneck microservices) within a dependency group.

Alternating among more bottleneck microservices results in

a longer gap between two successive millibottlenecks on the

TABLE IV: Results of live attack experiments.

Setting PMB avg. RT (ms) Norm. traffic CPU (%)
(#) Base. Att. Base. Att. Base. Att.

App.1-1K 478 69 1441 1 1.23 22 38

App.1-3K 484 76 1533 1 1.22 41 53

App.2-4K 455 79 1356 1 1.32 17 29

App.2-8K 483 77 1249 1 1.31 39 49

App.3-8K 489 83 1233 1 1.38 21 29

App.3-16K 470 91 1317 1 1.37 44 51

PMB : average millibottleneck length created. Att.: with attack.
Avg. RT: average response time (ms). Norm. traffic: normalized traffic.
CPU: average CPU usage of a representative bottleneck microservice.

same microservice, thus less overhead on bottleneck resources.

VI. DISCUSSIONS

Possible defense and mitigation. Detecting and defending

Grunt attacks is challenging since it is difficult to accurately

distinguish attack requests from legitimate ones. We discuss

two directions to explore the possible defense.

Detection of millibottlenecks and suspicious requests. Grunt

attack triggers alternating millibottlenecks in the system. To

detect millibottlenecks, the monitoring granularity should be

less than the millibottleneck length with fine-grained monitor-

ing tools. With the detection of millibottlenecks, an admin-

istrator can consider the requests with a high correlation to

millibottleneck as suspicious. Usually, the normal requests fol-

low the user behavior and have no statistical correlation with

millibottlenecks while suspicious requests may only appear

when the millibottlenecks occur. For example, Tail attack [51]

introduces a statistic-based solution to address this millibot-

tleneck challenge by correlating the resource usage spikes

with suspicious clients. However, detecting millibottlenecks

requires fine-grained resource monitoring at a microservice

component level, which is well-known to bring non-trivial

overhead. System administrators need to consider the trade-

off between monitoring granularity and the performance over-

head. Designing appropriate resource monitors and statistical

analysis of user behaviors represents a potential solution to

defend against Grunt attack.

Reduce sharing of hot-spot bottleneck microservices. Grunt

attack exploits the runtime dependencies among different

critical paths. The dependencies arise when critical paths

partially share microservices. Thus, an administrator can mit-

igate the runtime dependencies by reducing/avoiding sharing

microservices between different paths. For example, Alibaba

Trace [38] analyzes call graphs to identify runtime depen-

dencies and suggests that coupling the microservices with

strong dependency can reduce the propagation of blocking

effects. However, identifying runtime dependencies among

different critical paths requires fine-grained tracing tools, and

reducing the overlapped microservices requires redesigning the

microservices architecture, which may increase the difficulty

of development and deployment. Finding new performance

dependency analysis approaches and designing new resource

management tools to handle resource contention by such

dependency represents a potential mitigation.

125

Benchmark vs. real-world microservices. We evaluate the

effectiveness of Grunt attack with benchmarks instead of real-

world microservices to avoid ethical issues. The benchmark

applications (SocialNetwork and μBench) employ the same

RPC communication between component microservices as

real-world microservices [27], [38], [61]. The number of

unique microservices in those benchmarks ranges from 36 to

196, representing different scales from small to large systems.

In addition, even though some very large-scale microservices

deployments may consist of hundreds to thousands of ser-

vices across various containers, our Grunt attack still remains

harmful due to its ability to tune attack parameters to achieve

different attacking goals flexibly. For example, the attacker

can choose to attack only a subset of dependency groups to

damage some vulnerable critical paths in a large-scale system

without overloading its network bandwidth.

Impact of microservice’s queue size. The cross-tier queue

blocking exploits the limited queue size of each microservice.

It happens when the queue slots of DMs are occupied by

requests. The queue size of each microservice represents the

number of server threads that can be concurrently processed. A

larger queue size may cause more attacking requests needed

to fulfill the queue but also increase the system’s hardware

overhead to handle the concurrent threads. Sub-optimal queue

size can lead to large performance fluctuations and even

system instability [37]. Thus using very large queue sizes in

microservices could not address Grunt attack.

Limitations of Grunt attack. Grunt attack has several lim-

itations that we plan to address in future work. First, Grunt

attack currently focuses on disrupting the performance of the

backend microservices. However, static requests are usually

cached and served directly by frontend/edge servers (e.g.,

CDN) without accessing the backend microservices, which

may escape the impact of Grunt attacks. Second, profiling

accuracy for pairwise dependencies varies with the baseline

workload and achieves the highest F-score when the system

is under moderate resource utilization (Fig. 16). Third, some

dynamic requests require input parameters, attackers may not

be able to cover all possible valid parameter combinations,

which may leave some critical paths undiscovered.

VII. RELATED WORK

In this section, we review the most relevant work on

performance vulnerabilities of microservice applications and

low-volume application layer DDoS attacks.

Performance vulnerabilities of microservices. Several ex-

isting studies have explored the cross-service dependency

and runtime performance [23], [27], [39], [53], [61] in mi-

croservices. Luo el al. [38] conduct anatomy of microservice

call graphs to compare the dependencies between them to

traditional DAGs using large-scale tracing data. FIRM [46]

analyzes the runtime performance interference caused by hard-

ware resource contention and presents a resource management

framework using reinforcement learning. However, all of them

explore performance vulnerabilities from the perspective of

system managers. Our work presents a thorough analysis of

performance vulnerabilities of microservices from the per-

spective of external users and utilizes such vulnerabilities to

launch stealthy low-volume DDoS attacks that achieve large

performance damage.

Low-volume application layer DDoS attacks. Low-volume

application layer DDoS attacks focus on disrupting legitimate

user’s services by a small number of attack requests targeting

application services, as an extension of network-layer low-

volume attacks [17], [25], [26], [60]. Warmonger [59] exploits

the limited IPs in serverless platforms to induce IP blockages

of benign functions. ReDoS [54] uses malicious input to match

regular expressions that cause long delays. Shan et al. [51]

introduce a low-rate DoS attack that targets a single path

against a monolithic n-tier system with wisely strike ON/OFF

attack waveforms to bypass defense mechanisms, which share

similar waveforms patterns with us. However, microservices

architecture decomposes the monolithic design of business

logic into loosely coupled microservices, thus having better

performance anomaly tolerance [16]. The attacks that target

single path may become ineffective on microservices [15],

[36]. This is because attacking a single path will only affect

a few dependent execution paths in the system as shown in

this paper, which may not meet either the damage goal or

stealthiness requirements. Grunt attack profiles the runtime de-

pendencies between multiple paths and exploits multiple very

short bottlenecks alternating among different microservices to

achieve large performance problems with only small resource

overhead, which has not been explored before.

VIII. CONCLUSION

In this paper, we introduce Grunt attack, a novel form of

low-volume DDoS attack specifically targeting microservice

applications. The attack exploits the runtime dependencies

among execution paths within the system. We demonstrate that

by strategically introducing multiple millibottlenecks across

a few critical paths, accumulated blocking effects occur due

to these dependencies, resulting in severe system response

time degradation. We adopt a theoretical queuing network

model to characterize the relationship between the attacking

bursts and their impact (stealthiness vs. latency damage) on the

target microservices system. To assess the practicality of our

approach, we conducted extensive experiments using open-

source microservices benchmark applications on real cloud

environments and also evaluated live attacking scenarios. Our

findings contribute to the understanding of internal runtime

dependencies in microservices and shed light on novel and

stealthy application layer DDoS attacks.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd Dr.

Xing Gao for helping us improve the paper. This work has

been partially funded by the NSF grant CNS-2000681 and

contracts from Fujitsu Limited. Any opinions, findings, and

conclusions are those of the authors and do not necessarily

reflect the views of the funding agencies.

126

REFERENCES

[1] “20 best open source automation testing tools in 2022,”
https://www.softwaretestinghelp.com/open-source-testing-tools/,
accessed, 2022.

[2] “Amazon cloudwatch introduces high-resolution custom metrics
and alarms,” https://aws.amazon.com/about-aws/whats-new/2017/07/
amazon-cloudwatch-introduces-high-resolution-custom-metrics-and-
alarms/, accessed: 2017.

[3] “Automate software testing — testim,” https://go.testim.io/testim-
automate-enterprises, accessed, 2022.

[4] “Cloudlab,” https://www.cloudlab.us/, accessed: 2021.
[5] “Collectl,” http://collectl.sourceforge.net/, accessed: 2022.
[6] “Docker container stats,” https://docs.docker.com/reference/cli/docker/

container/stats/, accessed: 2023.
[7] “Short, stealthy, sub-saturating ddos attacks pose greatest security

threat to businesses,” https://www.businesswire.com/news/home/
20170605005149/en/Short-Stealthy-Sub-Saturating-DDoS-Attacks-
Pose-Greatest, accessed: 2022.

[8] “Snort - network intrusion detection,” https://www.snort.org/, accessed:
2021.

[9] “Amazon cloudwatch,” https://aws.amazon.com/cloudwatch/, 2017.
[10] “Cloudflare ddos threat report for 2022 q4,” https://blog.cloudflare.com/

ddos-threat-report-2022-q4/, 2022.
[11] “Autoscale common metrics,” https://learn.microsoft.com/en-us/azure/

azure-monitor/autoscale/autoscale-common-metrics, 2023.
[12] “Monitor cloudwatch metrics for your auto scaling,”

https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-
scaling-cloudwatch-monitoring.html, 2023.

[13] “Amazon ec2,” https://aws.amazon.com/ec2/, Accessed: 2021.
[14] “Microsoft azure,” https://azure.microsoft.com/en-us/, Accessed: 2021.
[15] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, and A. Zomaya, “Ai-

enabled secure microservices in edge computing: Opportunities and
challenges,” IEEE Transactions on Services Computing, 2022.

[16] A. F. Baarzi, G. Kesidis, D. Fleck, and A. Stavrou, “Microservices made
attack-resilient using unsupervised service fissioning,” in Proceedings of
the 13th European workshop on Systems Security, 2020, pp. 31–36.

[17] E. Cambiaso, G. Papaleo, and M. Aiello, “Taxonomy of slow dos
attacks to web applications,” in International Conference on Security
in Computer Networks and Distributed Systems. Springer, 2012, pp.
195–204.

[18] E. Chickowski, “Why haven’t ddos attacks gone away?”
https://www.hpe.com/us/en/insights/articles/why-havent-ddos-attacks-
gone-away-2202.html, 2022.

[19] J. Cloud, “Decomposing twitter: Adventures in service-oriented
architecture,” https://www.slideshare.net/InfoQ/decomposing-twitter-
adventures-in-serviceoriented-architecture, 2013.

[20] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Communications of ACM, vol. 61, no. 8, p. 65–72, July 2018.

[21] A. Detti, L. Funari, and L. Petrucci, “μbench: an open-source factory of
benchmark microservice applications,” IEEE Transactions on Parallel
and Distributed Systems, 2023.

[22] S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies: Dependency management is a crucial part
of system and software design.” Queue, vol. 16, no. 4, pp. 44–65, 2018.

[23] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi et al., “An open-
source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems,” in ASPLOS, 2019, pp. 3–18.

[24] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” TOCS, vol. 30, no. 4, pp. 1–26, 2012.

[25] X. Gu, Q. Wang, Q. Yan, J. Liu, and C. Pu, “Sync-millibottleneck attack
on microservices cloud architecture.” in Proceedings of the 19th ACM
ASIA Conference on Computer and Communications Security, 2024.

[26] M. Guirguis, A. Bestavros, and I. Matta, “Exploiting the transients of
adaptation for roq attacks on internet resources,” in ICNP. IEEE, 2004,
pp. 184–195.

[27] D. Huye, Y. Shkuro, and R. R. Sambasivan, “Lifting the veil on {Meta’s}
microservice architecture: Analyses of topology and request workflows,”
in 2023 USENIX Annual Technical Conference (USENIX ATC 23), 2023,
pp. 419–432.

[28] Jaeger, “Jaeger: open source, end-to-end distributed tracing,” https:
//www.jaegertracing.io/, 2022.

[29] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: Characterization and implications for cdns and web
sites,” in International Conference on World Wide Web. ACM, 2002.

[30] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” 1960.

[31] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
(S&P’13). San Francisco, CA, USA: IEEE, May 2013, pp. 127–141.

[32] Y.-M. Ke, C.-W. Chen, H.-C. Hsiao, A. Perrig, and V. Sekar, “Cicadas:
Congesting the internet with coordinated and decentralized pulsating
attacks,” in AsiaCCS. Xi’an, China: ACM, Nov. 2016, pp. 699–710.

[33] R. Kohavi, R. M. Henne, and D. Sommerfield, “Practical guide to
controlled experiments on the web: listen to your customers not to the
hippo,” in 13th ACM SIGKDD, 2007, pp. 959–967.

[34] R. Kohavi and R. Longbotham, “Online experiments: Lessons learned,”
Computer, vol. 40, no. 9, pp. 103–105, 2007.

[35] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: The shrew vs. the mice and elephants,” ser. SIGCOMM
’03, p. 75–86.

[36] Z. Li, H. Jin, D. Zou, and B. Yuan, “Exploring new opportunities to
defeat low-rate ddos attack in container-based cloud environment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 3, pp.
695–706, 2019.

[37] J. Liu, Q. Wang, S. Zhang, L. Hu, and D. Da Silva, “Sora: A
latency sensitive approach for microservice soft resource adaptation,”
in Proceedings of the 24th International Middleware Conference, 2023,
pp. 43–56.

[38] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He,
and C. Xu, “Characterizing microservice dependency and performance:
Alibaba trace analysis,” in Proceedings of the ACM SoCC, 2021, pp.
412–426.

[39] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, J. He, G. Yang, and C. Xu,
“Erms: Efficient resource management for shared microservices with sla
guarantees,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, 2022, pp. 62–77.

[40] X. Luo and R. K. Chang, “On a new class of pulsing denial-of-service
attacks and the defense,” in NDSS, San Diego, CA, USA, Feb. 2005.

[41] G. Maciá-Fernández, J. E. Dı́az-Verdejo, P. Garcı́a-Teodoro, and
F. de Toro-Negro, “Lordas: A low-rate dos attack against application
servers,” in CRITIS. Springer, 2007, pp. 197–209.

[42] T. Mauro, “Adopting microservices at netflix: Lessons for archi-
tectural design,” https://www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/, 2015.

[43] Microsoft, “Collect windows and linux performance data sources
with log analytics agent,” https://learn.microsoft.com/en-us/azure/azure-
monitor/agents/data-sources-performance-counters, 2023.

[44] G. Oikonomou and J. Mirkovic, “Modeling human behavior for defense
against flash-crowd attacks,” in 2009 IEEE International Conference on
Communications. IEEE, 2009, pp. 1–6.

[45] N. K. Pamela Weaver, “Shorter, sharper ddos attacks are on the rise –
and attackers are sidestepping traditional mitigation approaches,” https:
//www.imperva.com/blog/shorter-sharper-ddos-attacks-are-on-the-
rise-and-attackers-are-sidestepping-traditional-mitigation-approaches/,
2021.

[46] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“{FIRM}: An intelligent fine-grained resource management framework
for slo-oriented microservices,” in 14th ({OSDI} 20), 2020, pp. 805–
825.

[47] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proceedings of the 2009 ACM
workshop on Cloud computing security, 2009, pp. 77–84.

[48] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly,
“Ddos-shield: Ddos-resilient scheduling to counter application layer
attacks,” TON, vol. 17, no. 1, pp. 26–39, 2009.

[49] M. A. Sánchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E. Busta-
mante, B. Krishnamurthy, and W. Willinger, “Dasu: Pushing experiments
to the internet’s edge.” in NSDI, 2013, pp. 487–499.

[50] C. Satnic, “Amazon, microservices and the birth of aws cloud comput-
ing,” https://www.linkedin.com/pulse/amazon-microservices-birth-aws-
cloud-computing-cristian-satnic/, 2013.

[51] H. Shan, Q. Wang, and C. Pu, “Tail attacks on web applications,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1725–1739.

127

[52] H. Shan, Q. Wang, and Q. Yan, “Very short intermittent ddos attacks
in an unsaturated system,” in International Conference on Security and
Privacy in Communication Systems. Springer, 2017, pp. 45–66.

[53] A. Sriraman and T. F. Wenisch, “{μTune}:{Auto-Tuned} threading for
{OLDI} microservices,” in OSDI 18, 2018, pp. 177–194.

[54] C.-A. Staicu and M. Pradel, “Freezing the web: A study of redos
vulnerabilities in javascript-based web servers,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 361–376.

[55] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of network and computer
applications, vol. 34, no. 1, pp. 1–11, 2011.

[56] A. Toh, “Azure ddos protection—2021 q3 and q4 ddos attack
trends,” https://azure.microsoft.com/en-us/blog/azure-ddos-protection-
2021-q3-and-q4-ddos-attack-trends/, 2022.

[57] Q. Wang, Y. Kanemasa, J. Li, D. Jayasinghe, T. Shimizu, M. Matsubara,
M. Kawaba, and C. Pu, “Detecting transient bottlenecks in n-tier
applications through fine-grained analysis,” in ICDCS. IEEE, 2013,
pp. 31–40.

[58] Q. Wang, C.-A. Lai, Y. Kanemasa, S. Zhang, and C. Pu, “A study of
long-tail latency in n-tier systems: Rpc vs. asynchronous invocations,”
in 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2017, pp. 207–217.

[59] J. Xiong, M. Wei, Z. Lu, and Y. Liu, “Warmonger: Inflicting denial-of-
service via serverless functions in the cloud,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 955–969.

[60] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (ddos) flooding attacks,” IEEE
communications surveys & tutorials, vol. 15, no. 4, pp. 2046–2069,
2013.

[61] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and
M. Chabbi, “{CRISP}: Critical path analysis of {Large-Scale} microser-
vice architectures,” in USENIX ATC 22, 2022, pp. 655–672.

128

