
IrisBench: An Open-Source Benchmark Suite for Video
Processing Systems in Cloud

Zhiqi Li
Carleton University
Ottawa, Canada

zhiqili3@cmail.carleton.ca

Ruiqi Yu
Independent
Beijing, China

yuruiqi422@gmail.com

Jianshu Liu
Boise State University

Boise, USA
jianshuliu@boisestate.edu

Abstract
Recent advances in generative text-to-video AI models (e.g.,
VideoPoet and Sora) have spurred a surge in video production,
leading to an increased demand for video processing pipelines
among various video service providers such as YouTube and Tik-
Tok. With the improvement of cloud computing, video processing
systems are frequently updated and present both opportunities
and challenges while optimizing the quality of service (QoS) and
cloud resource utilization. However, research on evaluating the
performance of video processing systems is limited. Besides the
availability of video datasets and realistic workloads, the lack of
an open-source benchmark system reflecting the characteristics
of industrial video processing systems is a significant gap. To
fill this gap, we develop IrisBench, an open-source benchmark
suite for cloud video processing systems to facilitate research on
performance analysis. Our benchmark suite includes three video
services: video transcoding, video partitioning, and video object de-
tection services. Our future work relies on using IrisBench to study
the architectural implications of various cloud video processing
systems in the cloud.

CCS Concepts
• General and reference → Performance; Experimentation; •
Computer systems organization→ Cloud computing.

Keywords
Cloud Computing; Serverless; Stream Processing; Benchmark
ACM Reference Format:
Zhiqi Li, Ruiqi Yu, and Jianshu Liu. 2025. IrisBench: An Open-Source Bench-
mark Suite for Video Processing Systems in Cloud. In Companion of the
16th ACM/SPEC International Conference on Performance Engineering (ICPE
Companion ’25), May 5–9, 2025, Toronto, ON, Canada. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3680256.3721317

1 Introduction
The rapid advancement of generative text-to-video AI models (e.g.,
VideoPoet [25] and Sora [33]) has significantly transformed the
landscape of video production. The increased demand for designing
robust and scalable video processing pipelines to guarantee fast
and reliable delivery of videos has expanded among video service
providers such as YouTube and TikTok. Figure 1 describes a popular

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICPE Companion ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1130-5/2025/05
https://doi.org/10.1145/3680256.3721317

Clients

Gateway Video
Transcoding

Video
Partitioning

Video
Analytics

Video
Store

Image
Store

Model
Store

Gateway

Application

Database

HTTP requests

Message passing

RPC

Figure 1: Cloud video processing pipeline.

pipeline for cloud-based video processing systems, which consists
of several specialized modules, each dedicated to handling a specific
task of video data processing. Based on a scalable cloud infrastruc-
ture, video processing systems can handle large volumes of video
data efficiently, supporting applications ranging from streaming
services to real-time video analytics.

Besides the increasing attention of the industry, video processing
systems present numerous opportunities for performance evalu-
ation research in cloud computing. First, video processing work-
loads are representative of cloud applications with strict Quality
of Service (QoS) requirements, making them critical case stud-
ies for achieving both good performance and high resource ef-
ficiency [12, 18, 28, 32, 37, 42]. Second, video processing is of-
ten stateful, relying on robust state management and intensive
memory and disk usage, which expands the horizon of existing
benchmarks of cloud applications beyond CPU-intensive work-
loads [10, 23, 27]. Furthermore, video processing systems intersect
with interdisciplinary fields, such as computer vision and AI/ML,
driving researchers from diverse domains to collaborate for evolv-
ing cloud workflow design and the delivery of new products of
AI/ML algorithms.

However, systematic performance evaluation research of video
processing systems remains limited. Besides the availability of video
datasets and realistic workloads, the lack of an open-source bench-
mark suite reflecting the characteristics of industrial video pro-
cessing systems is a significant gap. Existing benchmarks only
adopt a single architecture and focus on specific tasks in the video
processing pipeline. For example, vbench [34] provides a video
transcoding framework designed to replicate the wide-ranging de-
mands of platforms like YouTube by using a diverse set of video
formats and parameters. However, it lacks considerations for con-
current, multi-user workloads, limiting its scalability insights for

https://doi.org/10.1145/3680256.3721317
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3680256.3721317

ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Zhiqi Li, Ruiqi Yu, & Jianshu Liu

high-demand environments. Video2Flink [22] offers a distributed
video partitioning framework based on a streaming system, but it
does not provide publicly available code, limiting its reproducibil-
ity. To bridge this gap, we have developed IrisBench, an open-
source benchmark suite for cloud-based video processing systems
to facilitate research on performance evaluation. Our benchmark
currently includes three video services: video transcoding based
on Function-as-a-Service (FaaS) architecture, video partitioning
using streaming architecture, and FaaS-based video object detec-
tion with pre-trained models. We have made IrisBench available
at https://github.com/rei-smz/CloudVideoAppBench to encourage
further research and collaboration in this domain.

2 The IrisBench Suite
We first describe the suite’s design principles and then introduce
the overall architecture of our IrisBench. Finally, we present the
architecture and functionality of each end-to-end video service in
our IrisBench.

2.1 Design Principles
IrisBench adheres to the following design principles:

• Representativeness: IrisBench is built using popular open-
source applications deployed by cloud providers, such as Ng-
inx [2], Flask [36], MINIO [1], Apache Kafka [14] and Apache
PyFlink [15]. We employed Kubernetes [16], an open-source
container orchestrator engine, and OpenFaaS [9], a platform
for deploying event-driven functions and microservices. Ad-
ditionally, we utilized Rook [3], specifically its Ceph and
Block storage capabilities, as a cloud-native storage orches-
trator. Most new code corresponds to benchmark module
and video service design, using Golang [4], Python [17],
gRPC [21] and HTTP requests.

• End-to-end operation: IrisBench implements the full func-
tionality of a service from the moment the requests are sent
from users until they reach the service’s backend and/or re-
turn to the client. Our benchmark client further implements
a configurable realistic workload generator to simulate user
requests for cloud video services.

• Heterogeneity: IrisBench implements applications and
benchmark modules using Python, Golang, Java, HTML,
and scripting to provide software heterogeneity, which is in
alignment with modern software development paradigms,
such as CI/CD and DevOps [5].

• Reconfigurability:All three applications are easily updated
and reconfigured. The video transcoding and object detection
are built atop serverless functions, and video partitioning
provides convenient plugins to modify the business logic.
Besides, the benchmark module provides APIs for loading
property files to enhance the reconfigurability of the system
and workloads.

2.2 Benchmark Modules
Our IrisBenchwas developedmainly in Golang and consists of three
components: benchmark client, benchmark server, and benchmark
data management. Figure 2 describes the overall architecture of
IrisBench.

Benchmark Client
Client-side

Module

Video
Services

Metrics
Warehouse

Benchmark Data
Management

Benchmark Server

User
Simulation

Server-side Module

Video
Store

Properties file (.json)

2

3

4

Metrics

Plotting
Module

Real-time
Monitoring Module

Control Flow Data Flow

Metrics
Aggregator

Figure 2: The architecture of IrisBench.

Table 1: Field Descriptions for Benchmark Configuration

Field Type Description

n_user integer Number of concurrent users
duration integer Benchmark duration (seconds)
id_range integer Maximum user ID
wait integer Waiting time between requests (seconds)
url string Service URL
test_name string Test name
path_prefix string Prefix of the paths to video objects
req_args JSON Object Arguments to be sent to the app

Benchmark Client includes a client-side module for workflow
control and a user simulation module that emulates the behaviors
of users accessing video services by sending concurrent requests
to cloud applications. The client-side module manages the configu-
ration of benchmarks and controls the benchmark workflow. First,
the client-side module loads the configuration of workloads via
JSON files. Table 1 presents the parameters for defining the realistic
workloads for video services. Such a design enhances the flexibil-
ity of the client-side module, enabling it to support various user
requests without requiring code modifications. Second, the client-
side module sends a message to the server-side module via gRPC to
start monitoring server-side metrics and initiates a timer. Third, the
User Simulation module creates a goroutine for each simulated user.
Synchronization between the main goroutine and the goroutines
handling simulated users is managed via a channel observed in
the simulated user goroutines. During the experiment, the simu-
lated user continuously sends user requests to the corresponding
video services at intervals defined in the configuration file. Once
the timer expires, the synchronization channel is destroyed in the
main goroutine, signaling the simulated users that the experiment
has ended. Fourth, after all simulated users have completed their
tasks after receiving the timer expiration signal, the client-side
module sends a message to the server-side module to stop monitor-
ing and save collected metrics. In the meantime, the performance
results from the client side are saved to files. These performance
results include the timestamps for sending requests, status code,
and timestamps for receiving responses, as well as the error rate
and the average response time of all user requests. Finally, both

https://github.com/rei-smz/CloudVideoAppBench

IrisBench: An Open-Source Benchmark Suite for Video Processing Systems in Cloud ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

Function Pod

OpenFaaS
Gateway

Transcoding
Users

http

Function Pod

Transcoding

Function Pod

Transcoding
Video Loading

FFmpeg

Figure 3: The architecture of video transcoding service.

client-side and server-side metrics will be forwarded to Benchmark
Data Management for visualization.

Benchmark Server refers to a server-side module deployed on
the cloud cluster. For a Kubernetes cluster, it is deployed explicitly
on the master node. The server-side module remains active but
on standby when no experiments are running. We implement a
submodule serving as an RPC server to listen to the control message
from the client-side module. It controls the state of the server-side
module via a channel. Upon receiving a "start monitoring" message,
the server-side module transitions to a running state. It continu-
ously monitors and collects metrics until the RPC server receives
a ’stop monitoring’ message, at which point the state reverts to
standby. We design an interface with methods for controlling the
runtime of the server-side module and amethod where the function-
ality for collecting metrics is to be implemented. Additionally, we
provide a base class that implements the runtime control methods,
supporting metric collection from different cloud platforms.

Benchmark Data Management is designed to visualize the
metrics monitored at runtime. It includes a metrics aggregator mod-
ule, a plotting module, and a real-time monitoring module. The
metrics aggregator module periodically pulls the metrics generated
from both client and server-side modules and flushes them to a
metrics warehouse. On the one hand, we implement a real-time
monitoring module with a web portal to provide support for quickly
detecting performance anomalies through a timeline graph of mon-
itored metrics, such as CPU usage, memory usage, and latency of
services. It extracts the required metrics from the metrics ware-
house asynchronously. On the other hand, the plotting module can
automatically generate statistical graphs for performance anomaly
analysis by aggregating multiple metrics. For example, we observed
the latency degradation and transient CPU bottlenecks from the
generated timeline graph from the real-time monitoring module,
then the plotting module provides the correlation analysis to ver-
ify the relationship between performance and system anomalies,
which can help researchers to identify interesting phenomena and
inspire in-depth research.

2.3 Video Transcoding
Scope: This application implements an end-to-end service for
transcoding videos to the target format and resolution specified by
the users (clients).
Design: Figure 3 shows the architecture of the end-to-end ser-
vice. Since the Function as a Service (FaaS) paradigm is gaining

…… … … …

Apache Kafka Apache PyFlink

Video Frames Blocks

Frame
Restore

Bhattacharyya
Distance
Compute

Figure 4: The architecture of video partitioning service.

popularity and has the potential to represent the next generation
of video processing systems, we designed the video transcoding
application atop OpenFaaS and Kubernetes. We deployed Kuber-
netes and OpenFaaS Community Edition on a cloud cluster. As
the FaaS paradigm deals with stateless functions, we integrated an
Amazon S3-compatible object storage, MINIO, to manage and store
clients’ video files. User requests are received and dispatched to
Function Pods by OpenFaaS Gateway. We observed that the FaaS
paradigm is typically employed for short-duration scenarios due
to the ephemeral nature of functions, while video transcoding is
inherently time-intensive [24]. Hence, we also deployed a Mon-
goDB database to track the status of requests while preserving the
statelessness of FaaS functions. Each status record contains a field
indicating the current state (e.g., running, success, or error) and
the corresponding start and end timestamps. Upon receiving a user
request, the function within a Function Pod creates an entry in the
request status management database and returns a request ID to the
user instead of providing the status once the request is completed.
In the meantime, the invoked function retrieves the corresponding
videos from the object storage using the MINIO API and performs
the required transcoding operation with user-provided arguments.
We rely on FFmpeg [11] to perform video transcoding tasks like
converting video codecs (e.g., from H.265 to H.264), audio codecs
(e.g., from MP3 to AAC), resolution (e.g., from 1080p to 720p), and
video file formats (e.g., from MP4 to MKV). FFmpeg leverages its
libavcodec library to handle video and audio codec conversions,
supporting a wide range of compression and encoding algorithms,
such as H.264 and H.265 for video and AAC and MP3 for audio.
Besides, FFmpeg utilizes the libswscale library to execute the
Bicubic interpolation algorithm by default. In contrast to simpler
techniques like nearest-neighbor or bilinear interpolation, bicubic
interpolation is more effective in reducing artifacts such as blocki-
ness, resulting in smoother and more visually appealing images. It
provides better edge transitions, making it a preferred choice for re-
sizing images in many computer vision applications [19]. Once the
process is complete, the transcoded video is uploaded back to the
object storage using the MINIO API, and the corresponding status
in the management database is updated. Users are allowed to query
the status of requests using the request IDs from the application.

ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Zhiqi Li, Ruiqi Yu, & Jianshu Liu

2.4 Video Partitioning.
Scope: The service implements an end-to-end service that can par-
tition video into meaningful sequences of frames based on detected
scene changes.
Design: To process in-stream video from various video sources in
real-time, we employ Apache Flink and Apache Kafka to design
the video partitioning application, as Apache Flink with Apache
Kafka is still a popular solution to facilitate the communication
between video production and video processing systems [22]. To
improve Apache Flink’s compatibility with Python libraries for
image processing, we leverage Apache PyFlink, which enables the
development of scalable batch and streaming workloads through its
Python API. In this paper, we use the terms "Flink" and "PyFlink"
interchangeably. Figure 4 describes the architecture of the end-to-
end service. Each Kafka producer can independently read multiple
distinct video files and extract frames at regular intervals. These
frames are then divided into blocks in byte streams and forwarded
to a Kafka input topic. Flink, integrated with a Kafka consumer,
subsequently consumes the data for processing. Our video parti-
tioning approach is based on comparing color histograms between
consecutive video frames. We compute the color histogram to get a
3D color histogram over the RGB channels with 8 bins per channel,
resulting in an 8 × 8 × 8 histogram. The histogram captures the
distribution of colors in the frame and is then normalized to ensure
that the histogram values remain comparable across frames. We
track the histogram of the previous frame and compare it with the
current frame’s histogram using the Bhattacharyya distance. The
Bhattacharyya distance is an established metric used to measure
the similarity between two probability distributions [6]. It is par-
ticularly effective for comparing histograms because it quantifies
the overlap between two distributions, providing a value between 0
and 1, where 0 indicates identical distributions and 1 indicates max-
imum dissimilarity. The Bhattacharyya distance 𝐷𝐵 between two
normalized histograms 𝑃 and 𝑄 is given by the following formula:

𝐷𝐵 (𝑃,𝑄) = − ln

(
𝑛∑︁
𝑖=1

√︁
𝑃 (𝑖)𝑄 (𝑖)

)
(1)

𝑃 (𝑖) and 𝑄 (𝑖) represent the values of corresponding histogram
bins, and 𝑛 is the total number of bins. The summation is the Bhat-
tacharyya coefficient, which measures the overlap between the
two histograms. Then, we set a threshold to filter out frames with
low Bhattacharyya distances, retaining only those with higher dis-
tances, which are more likely to correspond to significant scene
changes.

In the upstream section of the data pipeline, the client extracts
video frames at configurable intervals (e.g., every 30 or 60 frames,
with smaller intervals representing higher data throughput). Each
frame is divided into multiple blocks and converted into byte
streams. Each record’s key consists of the corresponding video
name, the frame’s position within the video, and the block’s index,
while the value holds the byte data for that block. The client then
sends this record to the Kafka input topic.

In the downstream section, Flink processes the data, offering op-
erators that facilitate the retrieval of records from Kafka for further
processing. First, the blocks associated with each frame are aggre-
gated and reassembled to restore the original frame. Flink reorders

Function PodOpenFaaS
Gateway

Function Pod

Function Pod

Object Detection

Object Detection

Object
Detection

Video Loading

Preprocessing

Model Loading

Object Detect

Users

http

Figure 5: The architecture of video object detection service.

the incoming out-of-order data streams based on frame numbers to
ensure sequential processing. Subsequently, the Bhattacharyya dis-
tance between consecutive frames is computed. Frames with higher
Bhattacharyya distances are filtered and selected as keyframes,
marking potential video partition points. Finally, the results are
sent to the Kafka output topic on the designated node. We have
implemented stateless operators, Map and Filter, and stateful oper-
ators, Window, KeyBy, and Reduce, to process each record using
different logic.

2.5 Video Object Detection.
Scope: The service implements an application that can identify the
objects occurring in the provided videos.
Design: Figure 5 depicts the architecture of the end-to-end ser-
vice. As with the video transcoding application, we designed the
video object detection application atop OpenFaaS and Kubernetes
with Amazon S3-compatible object storage, MINIO, for video man-
agement. The application was built using the official OpenFaaS
Python3-Flask Debian template, with dependencies on OpenCV and
TensorFlow. We implement a user handler for receiving and parsing
user requests. The user request may include video path and object
detection model parameters. Then, our object detection service has
four phases: (1) Model Loading Phase: we can load pre-trained mod-
els from external model providers during pod initialization, which
enhances the flexibility of our application. For example, we load
two deep learning models: SSD-MobileNetV2 [39] for lightweight
benchmarks and Inception ResNetV2 [38] for high-performance
benchmarks. Both models are sourced from TensorFlow Hub. (2)
Video Loading Phase: we load the video object from the MINIO
database according to the video path inside the user request. (3)
Preprocessing Phase: the video preprocessing utility first processes
the video retrieved from the object storage, which splits the video
into key frames (e.g., we can select the first frame of each one-
second time window as a keyframe). (4) Object Detection Phase:
the function within a Function Pod performs the object detection
task with pre-trained models. The object detection model takes the
preprocessed keyframes as input, performs detection on each frame,
and returns the detection results along with the video’s width and
height to the user request handler. Finally, the user request handler
responds to the user with the detection data in JSON format.

IrisBench: An Open-Source Benchmark Suite for Video Processing Systems in Cloud ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

3 Example Experiments
In this section, we show example results of our IrisBench imple-
mentations to investigate the characteristics of our benchmark
under different realistic workloads. Extensive experiments on a
larger cluster require substantial efforts and need to be addressed
in future work.

3.1 Experimental Setup
Deployment. We run experiments on a cloud cluster hosted on
CloudLab [8] to evaluate the functionality of our benchmark system.
Our cluster comprises five servers equipped with 2 x Intel Xeon
E5-2650v2 processors (8 cores each, 2.6GHz) and 64GB of RAM (8 x
8GB DDR-3 RDIMMs, 1.86GHz). We reserve one node to serve as
the client, and the remaining four nodes are designated as servers
for running video processing applications.

Video Transcoding. We set up a Kubernetes v1.31.0 cluster for
container orchestration and management, with one node acting as
the master and the remaining three as worker nodes. We utilize the
Rook Ceph and Rook Block Storage class on the Kubernetes cluster.
In particular, we deploy MINIO to provide 500GB of storage space
for object storage. We deployed OpenFaaS Community Edition on
the Kubernetes cluster for the designed serverless functions and
installed the OpenFaaS CLI on the master node. We also uploaded
transcoding functions with the codebases to the master node. For
the benchmark server design, we upload the server-side module to
the master node and make it run in the background.

Video Partitioning.We set up a streaming architecture to process
in-stream video. We use Apache Kafka-v2.11-1.1.1 as a persistent
message queue for the input/output video streams. We use Apache
Flink-1.17.1 as the stateful stream processing engine, and the Flink
TaskManager memory size was set to 40GB. We configure RocksDB
as the state backend in the Flink TaskManager node and employ
HDFS as reliable backup storage for runtime states [41].

Video Object Detection. Similar to the setup of video transcoding
with serverless functions, we also prepare the codebases of video
object detection and upload them to the master node. In particular,
object detection supports two modes: lightweight mode (i.e., LW)
and high-performance mode (HP).
Video Dataset. Currently, we selected 25 distinct videos from the
MOT Challenge dataset [29, 35], a widely used dataset for object
detection and tracking in videos, and duplicated them to create a
total of 50 videos to simulate 50 users in our system. The videoswere
in MP4 format with resolutions of 960x540, 640x480, or 768x576,
with an average length of 39.48 seconds. The FPS of these videos
ranges from 5 to 30, and the codec is MPEG-4 Visual. We have
continuous efforts in input video selection by considering the video
features, privacy and availability.
Workload and Parameters. Table 2 lists the input parameters
used in the experiments. In the example experiments, for the video
object detection and video transcoding benchmarks, we specified
requesting periods of 300 seconds and 30 seconds, respectively. Dur-
ing the requesting period, each simulated user continuously sends
requests, with a 5-second interval between consecutive requests.
We increase the number of concurrent users from 5 to 50 in step 5
to evaluate the effect of the concurrency level in our benchmark
system.

Service Pattern
of

simulated
user/videos

Input
Parameters

Output

Video
Transcoding

client-server [5-50]
video format

mp4

Video in mkv format
and 1280x720

resolution

Video
Partitioning

streaming [5-50]
video length
avg. 39.48s

Time when shot change
occurs

Video Object
Detection

client-server [5-50]
video resolution

960x540
Identified objects

Table 2: Workload Parameters of IrisBench

The general outputs of the three video services are also listed in
Table 2. We configure the video transcoding service to transcode
videos to a resolution of 1280x720 in MKV format and change the
video codec to H.264. The video partitioning service detects shot
changes inside the video and outputs the timestamp when the shot
changes occurred. Video object detection is to detect all identifiable
objects based on its training dataset (i.e., COCO dataset).

3.2 Experimental Results
Weevaluate our benchmark system’s functionality and performance
by monitoring practical metrics under realistic workloads with
different levels of concurrency.

Figure 6 summarizes the monitored metrics of video transcoding
and object detection experiments under different workloads. As the
workload concurrency increases, Figure 6(a) and Figure 6(d) record
the total number of requests processed in the application. Figure 6(b)
and Figure 6(e) show that the average task execution time increases
linearly as the number of users increases. In particular, a sharp
rise is observed when the number of users increases from 35 to 40
in Figure 6(b). Meanwhile, Figure 6(c) and Figure 6(f) capture the
average CPU usage of the cluster. The drop in CPU usage after the
number of users reached 40 occurred because, in these cases, the
system spent several periods executing retries for a few requests
while many other requests had already been completed successfully,
leaving some pods idle. These results show the functionality of our
benchmark. The comprehensive performance evaluation analysis
lies in our future work.

4 Related Work
Cloud applications have attracted a lot of attention over the
past decade, with various benchmark suites emerging from both
academia and industry. These benchmarks can broadly be catego-
rized into traditional cloud benchmarks, microservices benchmarks,
and specialized benchmarks for video processing. While many
frameworks perform well within single or simplified multi-tier
environments, they fall short in addressing the complexities of
large-scale, concurrent multi-user cloud applications. Additionally,
most prior work does not utilize FaaS methodologies [7, 30, 40],
which we argue are essential for flexible scalability in modern cloud
applications. To meet these evolving requirements, our work intro-
duces a method that accommodates multi-user demands through a
scalable, FaaS-enabled architecture, capturing the interdependen-
cies and real-world complexities that prior approaches do not fully
address.

Cloud Benchmarks. With the rise of microservices, recent
work [12, 18, 28, 32, 37, 42] has developed benchmarks that specifi-
cally address their unique characteristics. 𝜇Suite [37], for example,

ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada Zhiqi Li, Ruiqi Yu, & Jianshu Liu

10 20 30 40 50
Number of Concurrent Users

0
50

100
150
200
250
300

To
ta

l N
um

be
r

of
 R

eq
ue

st
s

[#
]

(a) Measured total requests in video transcoding under
different workloads.

10 20 30 40 50
Number of Concurrent Users

0

200

400

600

800

Av
er

ag
e

Ta
sk

 E
xe

cu
ti

on
 T

im
e

[s
]

(b) Measured average task execution time in video
transcoding under different workloads.

10 20 30 40 50
Number of Concurrent Users

0

20

40

60

80

100

CP
U

 U
ti

liz
at

io
n

[%
]

(c) Measured CPU usage in video transcoding under
different workloads.

10 20 30 40 50
Number of Concurrent Users

0

200

400

600

800

1000

To
ta

l N
um

be
r

of
 R

eq
ue

st
s

[#
]

Light Weight (LW)
High Performance (HP)

(d) Measured total requests in video object detection
under different workloads.

10 20 30 40 50
Number of Concurrent Users

2

4

6

8

10
Av

er
ag

e
RT

T
[s

] Light Weight (LW)
High Performance (HP)

(e) Measured average response time in video object
detection under different workloads.

10 20 30 40 50
Number of Concurrent Users

0

20

40

60

80

100

CP
U

 U
ti

liz
at

io
n

[%
] Light Weight (LW)

High Performance (HP)

(f) Measured CPU usage in video object detection under
different workloads.

Figure 6: Performance evaluation on the effect of concurrency level (# of concurrent users).

targets sub-millisecond latency measurements and analyzes the
effects of OS scheduling, network protocols, and RPCs on microser-
vices’ response times. Liu et al. [32] focus on the evaluation of
containerized edge-cloud computing stacks for industrial applica-
tions from a client’s perspective, examining the impact of factors
like message-sending intervals, payload size, network bandwidth,
and concurrent devices on system latency and processing capabil-
ity. DeathStarBench [18] diverges by targeting large-scale applica-
tions with numerous unique microservices, thus revealing phenom-
ena like network contention and cascading QoS issues caused by
inter-tier dependencies. Our IrisBench targets the video processing
pipelines and emulates real-world deployment in large-scale cloud
environments.

Video Processing Benchmarks. In response to the growing
demands of video processing in cloud environments, specialized
benchmarks have been developed [7, 22, 26, 30, 31, 40]. vbench [34]
provides a video transcoding framework designed to replicate the
wide-ranging demands of platforms like YouTube by using a diverse
set of video formats and parameters. Fouladi et al. [13] developed a
low-latency transcoding system using AWS Lambda, adhering to a
FaaS paradigm, which is particularly useful for scenarios requiring
rapid scaling. SVE [20] is a scalable, distributed system designed
for efficient multi-task video processing that meets the extensive
computational requirements of Facebook’s video services infras-
tructure. Our IrisBench supports diverse tasks in video processing
pipelines and adopts popular FaaS and streaming architectures for
performance evaluation.

5 Limitations and Future Work
IrisBench has several limitations that we plan to address in future
work. First, the scalability of IrisBench is currently constrained by
the OpenFaaS Community Edition, which prevents comprehensive

evaluations of function scaling in a large-scale production envi-
ronment under high-concurrency workloads. Future research will
explore alternative FaaS platforms with more flexible scalability
options, such as Knative, to extend IrisBench ’s applicability to
large-scale serverless video workloads. Meanwhile, a large-scale
performance evaluation will be conducted for studying the architec-
tural implications. For example, our experimental results of video
object detection services using lightweight and high-performance
models have shown minimal performance variation, necessitating
further investigation into underlying architectural factors.

Second, IrisBench relies on the Kubernetes metrics server for
performance monitoring, which introduces limitations in accuracy
and granularity. Currently, metrics are indirectly obtained via the
Kubernetes metrics server, which may affect the precision of bench-
marking results. Future iterations of IrisBench will incorporate
direct metric extraction from Prometheus and the Kubelet metrics
API, ensuring higher accuracy in performance measurement and
system profiling.

Finally, a visualization framework for real-time performance
monitoring of IrisBench is still in progress. To enhance observabil-
ity, future versions will deploy an InfluxDB-backed storage system
for historical performance data and a Grafana-based web inter-
face for real-time visualization. This will provide researchers with
a more comprehensive view of workload execution, supporting
in-depth performance analysis and system tuning.

6 Conclusions
In this paper, we present the design of IrisBench, a benchmark suite
for cloud-based video processing, addressing the critical need for
open-source tools for performance analysis research. Our bench-
mark supports multi-task processing with components for video
transcoding, partitioning, and object detection, allowing for de-
tailed performance evaluations across diverse video workloads.

IrisBench: An Open-Source Benchmark Suite for Video Processing Systems in Cloud ICPE Companion ’25, May 5–9, 2025, Toronto, ON, Canada

Our future work is to use IrisBench to explore the architectural
implications of modern cloud video processing systems, supporting
research into cloud infrastructure and performance optimization of
video-centric applications.

References
[1] [n. d.]. MinIO. https://min.io/. Accessed: 2024-11-09.
[2] [n. d.]. NGINX. https://www.nginx.com/. Accessed: 2024-11-09.
[3] Rook Authors. 2018. Rook (Ceph and Block). https://rook.io/. Accessed: 2024-11-

09.
[4] The GoAuthors. 2009. The Go Programming Language. https://go.dev/. Accessed:

2024-11-09.
[5] Shashikant Bangera. 2018. DevOps for Serverless Applications: Design, deploy, and

monitor your serverless applications using DevOps practices. Packt Publishing Ltd.
[6] Anil Kumar Bhattacharyya. 1943. On a measure of divergence between two

statistical populations defined by their probability distributions. Bulletin of the
Calcutta Mathematical Society 35 (1943), 99–109.

[7] Chavit Denninnart and Mohsen Amini Salehi. 2024. SMSE: A serverless plat-
form for multimedia cloud systems. Concurrency and Computation: Practice and
Experience 36, 4 (2024), e7922.

[8] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[9] Alex Ellis. 2017. OpenFaaS. https://www.openfaas.com/. Accessed: 2024-11-09.
[10] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad

Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. Acm sigplan notices 47, 4 (2012),
37–48.

[11] FFmpeg Team. 2024. FFmpeg. https://ffmpeg.org/.
[12] Stefan Fischer, Pirmin Urbanke, Rudolf Ramler, Monika Steidl, and Michael

Felderer. 2024. An Overview of Microservice-Based Systems Used for Evaluation
in Testing and Monitoring: A Systematic Mapping Study. In Proceedings of the
5th ACM/IEEE International Conference on Automation of Software Test (AST 2024).
182–192.

[13] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363–376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[14] Apache Software Foundation. 2011. Apache Kafka. https://kafka.apache.org/.
Accessed: 2024-11-09.

[15] Apache Software Foundation. 2019. Apache PyFlink. https://flink.apache.org/.
Accessed: 2024-11-09.

[16] Cloud Native Computing Foundation. 2014. Kubernetes. https://kubernetes.io/.
Accessed: 2024-11-09.

[17] Python Software Foundation. 1991. Python. https://www.python.org/. Accessed:
2024-11-09.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[19] Rafael C. Gonzalez and Richard E. Woods. 2008. Digital Image Processing (3rd
ed.). Pearson Prentice Hall.

[20] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, and Wyatt Lloyd.
2017. SVE: Distributed Video Processing at Facebook Scale. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 87–103. doi:10.1145/

3132747.3132775
[21] Google Inc. 2015. gRPC. https://grpc.io/. Accessed: 2024-11-09.
[22] Dimitrios Kastrinakis and Euripides GM Petrakis. 2023. Video2Flink: real-time

video partitioning in Apache Flink and the cloud. Machine Vision and Applications
34 (2023), 42.

[23] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark suite and
evaluation methodology for latency-critical applications. In 2016 IEEE Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, 1–10.

[24] Jeongchul Kim and Kyungyong Lee. 2019. Practical cloud workloads for serverless
faas. In Proceedings of the ACM Symposium on Cloud Computing. 477–477.

[25] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant
Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu,
et al. 2023. Videopoet: A large language model for zero-shot video generation.
arXiv preprint arXiv:2312.14125 (2023).

[26] Tajinder Kumar, Purushottam Sharma, Jaswinder Tanwar, Hisham Alsghier,
Shashi Bhushan, Hesham Alhumyani, Vivek Sharma, and Ahmed I Alutaibi. 2024.
Cloud-based video streaming services: Trends, challenges, and opportunities.
CAAI Transactions on Intelligence Technology 9, 2 (2024), 265–285.

[27] Supreeth Kurpad, BT Smruthi, Swarupa Vijaykumar, Suvigya Jain, and Subra-
maniam Kalambur. 2023. Microarchitectural Analysis and Characterization of
Performance Overheads in Service Meshes with Kubernetes. In 2023 3rd Asian
Conference on Innovation in Technology (ASIANCON). IEEE, 1–6.

[28] Rodrigo Laigner, Zhexiang Zhang, Yijian Liu, Leonardo Freitas Gomes, and
Yongluan Zhou. 2024. A benchmark for data management in microservices.
(2024).

[29] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. 2015. MOTChallenge
2015: Towards a Benchmark for Multi-Target Tracking. arXiv:1504.01942 [cs]
(April 2015). http://arxiv.org/abs/1504.01942 arXiv: 1504.01942.

[30] Pawissanutt Lertpongrujikorn and Mohsen Amini Salehi. 2023. Object as a
service (oaas): Enabling object abstraction in serverless clouds. In 2023 IEEE 16th
International Conference on Cloud Computing (CLOUD). IEEE, 238–248.

[31] Xiangbo Li, Mohsen Amini Salehi, Yamini Joshi, Mahmoud K Darwich, Brad
Landreneau, and Magdy Bayoumi. 2018. Performance analysis and modeling
of video transcoding using heterogeneous cloud services. IEEE Transactions on
Parallel and Distributed Systems 30, 4 (2018), 910–922.

[32] Yu Liu, Dapeng Lan, Zhibo Pang, Magnus Karlsson, and Shaofang Gong. 2021.
Performance evaluation of containerization in edge-cloud computing stacks for
industrial applications: A client perspective. IEEE Open Journal of the Industrial
Electronics Society 2 (2021), 153–168.

[33] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing
Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, et al. 2024. Sora: A review on
background, technology, limitations, and opportunities of large vision models.
arXiv preprint arXiv:2402.17177 (2024).

[34] Andrea Lottarini, Alex Ramirez, Joel Coburn, Martha A Kim, Parthasarathy
Ranganathan, Daniel Stodolsky, andMarkWachsler. 2018. vbench: Benchmarking
video transcoding in the cloud. ACM SIGPLAN Notices 53 (2018), 797–809.

[35] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. 2016. MOT16: A
Benchmark for Multi-Object Tracking. arXiv:1603.00831 [cs] (March 2016). http:
//arxiv.org/abs/1603.00831 arXiv: 1603.00831.

[36] Armin Ronacher. 2010. Flask. https://flask.palletsprojects.com/. Accessed:
2024-11-09.

[37] Akshitha Sriraman and Thomas F Wenisch. 2018. 𝜇 suite: a benchmark suite for
microservices. In 2018 ieee international symposium on workload characterization
(iiswc). IEEE, 1–12.

[38] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. 2017.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 31.

[39] TensorFlow. [n. d.]. SSD MobileNetV2 (TensorFlow2). https://www.kaggle.com/
models/tensorflow/ssd-mobilenet-v2/TensorFlow2/ssd-mobilenet-v2/1.

[40] Huaizheng Zhang, Meng Shen, Yizheng Huang, Yonggang Wen, Yong Luo,
Guanyu Gao, and Kyle Guan. 2021. A serverless cloud-fog platform for dnn-based
video analytics with incremental learning. arXiv preprint arXiv:2102.03012 (2021).

[41] Shungeng Zhang, QingyangWang, Yasuhiko Kanemasa, Julius Michaelis, Jianshu
Liu, and Calton Pu. 2022. ShadowSync: latency long tail caused by hidden synchro-
nization in real-time LSM-tree based stream processing systems. In Proceedings
of the 23rd ACM/IFIP International Middleware Conference. 281–294.

[42] Yanqi Zhang, Zhuangzhuang Zhou, Sameh Elnikety, and Christina Delimitrou.
2024. Ursa: Lightweight Resource Management for Cloud-Native Microservices.
In 2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 954–969.

https://min.io/
https://www.nginx.com/
https://rook.io/
https://go.dev/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.openfaas.com/
https://ffmpeg.org/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://kafka.apache.org/
https://flink.apache.org/
https://kubernetes.io/
https://www.python.org/
https://doi.org/10.1145/3132747.3132775
https://doi.org/10.1145/3132747.3132775
https://grpc.io/
http://arxiv.org/abs/1504.01942
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831
https://flask.palletsprojects.com/
https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v2/TensorFlow2/ssd-mobilenet-v2/1
https://www.kaggle.com/models/tensorflow/ssd-mobilenet-v2/TensorFlow2/ssd-mobilenet-v2/1

	Abstract
	1 Introduction
	2 The IrisBench Suite
	2.1 Design Principles
	2.2 Benchmark Modules
	2.3 Video Transcoding
	2.4 Video Partitioning.
	2.5 Video Object Detection.

	3 Example Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Related Work
	5 Limitations and Future Work
	6 Conclusions
	References

