
Mitigating Large Response Time Fluctuations
through Fast Concurrency Adapting in Clouds

Jianshu Liu∗, Shungeng Zhang∗, Qingyang Wang∗, Jinpeng Wei†

∗Louisiana State University–Baton Rouge, †University of North Carolina–Charlotte

Abstract—Dynamically reallocating computing resources to
handle bursty workloads is a common practice for web ap-
plications (e.g., e-commerce) in clouds. However, our empirical
analysis on a standard n-tier benchmark application (RUBBoS)
shows that simply scaling an n-tier application by reallocating
hardware resources without fast adapting soft resources (e.g.,
server threads, connections) may lead to large response time
fluctuations. This is because soft resources control the workload
concurrency of component servers in the system: adding or
removing hardware resources such as Virtual Machines (VMs)
can implicitly change the workload concurrency of dependent
servers, causing either under- or over-utilization of the critical
hardware resource in the system. To quickly identify the opti-
mal soft resource allocation of each server in the system and
stabilize response time fluctuation, we propose a novel Scatter-
Concurrency-Throughput (SCT) model based on the monitoring
of each server’s real-time concurrency and throughput. We
then implement a Concurrency-aware system Scaling (ConScale)
framework which integrates the SCT model to fast adapt the
soft resource allocations of key servers during the system scaling
process. Our experiments using six realistic bursty workload
traces show that ConScale can effectively mitigate the response
time fluctuations of the target web application compared to the
state-of-the-art cloud scaling strategies such as EC2-AutoScaling.

Index Terms—scalability, soft resources, web applications

I. INTRODUCTION

Scalability is a key feature for modern cloud platforms:
an application can dynamically add or remove its computing
resources (e.g., VMs or CPU cores) to meet the requirement
of varying workloads. For modern web-facing applications
such as e-commerce, scalability is especially important since
their workloads are naturally bursty. For example, customers
visiting Amazon.com during holidays (e.g., Black Friday)
could be 10X higher than that in other normal days [1].
Even within the same day, the peak workload during the rush
hours can be significantly higher than the midnight traffic.
The traditional practice of always provisioning the system for
peak workloads will waste a significant amount of computing
resources and power due to low resource utilization (e.g.,
averagely 18% [2]). Thus, the ability to dynamically scale a
web application to match the real-time workload need is of
critical importance.

Unlike embarrassingly parallel batch workloads such as
MapReduce and Hadoop, effectively scaling a web application
is especially challenging due to two reasons. First, most web
applications have strict Quality of Service (QoS) requirements.
For example, web search requires 99th percentile response
time < 300ms [3]–[5]). Due to the bursty nature of web

 0

 400

 800

 1200

 1600

 2000

 2400

 0 100 200 300 400 500 600 700

 0

 2

 4

 6

 8

 10
Bursty Workload Trace

R
es

p
o

n
se

 T
im

e
[m

s]

T
o

ta
l

n
u

m
b

er

o
f

V
M

s
[#

]

Timeline [s]

Response Time # of VMs

Fig. 1: Large response time fluctuations of a 3-tier system
when it scales the number of VMs using the EC2-
AutoScaling strategy to handle bursty workload.

application workloads, it is challenging to intelligently scale
the necessary computing resources to adapt to the dynamic
workload variations and always meet the SLAs. Some pre-
vious research efforts have adopted a proactive approach to
predict near-future workload [6], [7], however, predicting n-
tier application workloads such as e-commerce is a well-
known research challenge because of the bursty nature of the
workload (e.g., Slashdot effect [8]). So temporary overloading
of the system is unavoidable in practice. Figure 1 shows the
large response time fluctuation of a 3-tier system when it scales
the number of VMs using the EC2-AutoScaling strategy 1 to
handle the workload variation. We frequently observed large
response time spikes during the system scaling phase due to
the temporary overloading.

Second, beyond hardware resources, many configuration
issues such as soft resource allocations (e.g., server threads
or connections) have a significant impact on web application
performance. For example, the previous research [10] shows
that scaling such as adding or removing VMs in an n-tier
system also changes the workload concurrency of dependent
servers, which may cause either under- or over-utilization of
the critical hardware resource in the system. Thus hardware-
only scaling solutions [6], [7], [11] such as EC2-AutoScaling
may not gain the full potential of newly added hardware
resources without adapting soft resource allocations. Even
worse, the imbalance between hardware and soft resources
would incur performance degradation instead of performance
improvement [12]. More recent research [10] integrates the
concurrency adaption (through soft resource reallocation) with
the hardware resource scaling in their cloud system scaling
management. However, their concurrency adaption for each

1EC2-AutoScaling applies a simple utilization threshold (e.g., 80%) on
resources such as CPU to make scaling decisions. [9]

hardware scaling is based on static pre-profiling results before
the production phase. Once the production runtime environ-
ment (e.g., the system state, workload characteristic, and
scaling strategy) changes from the pre-profiling conditions, the
static profiling approach could generate sub-optimal or even
harmful recommendations of soft resource allocations.

In this paper, we propose a novel online Scatter-
Concurrency-Throughput (SCT) model which can quickly rec-
ommend the optimal soft resource allocations for each server
based on the real-time monitoring of each server’s concurrency
and throughput. We assume each server in a web system
keeps a request processing log, which records the arrival and
departure time of each request of the server at millisecond
granularity. For sufficiently short time intervals (e.g., 50ms),
we can use the request completion rate as the server’s real-
time throughput, and concurrent requests as server’s real-time
concurrency. Based on the classic Utilization Law [13], the
optimal concurrency of a server is the minimal concurrency
that can achieve the highest server throughput. Given the
bursty nature of n-tier application workload and continu-
ous monitoring of each server’s real-time concurrency and
throughput, our approach can catch the workload concurrency
variation and reveal the optimal concurrency of each server on
the fly based on the correlation analysis of the two collected
metrics.

We implement a Concurrency-aware system Scaling (Con-
Scale) framework that integrates our SCT model with the
hardware resource scaling into our system scaling manage-
ment. ConScale exploits the SCT model to estimate an up-to-
date rational concurrency setting of each server in the system
by analyzing fine-grained measured data (concurrency and
throughput) of each server. Specifically, ConScale takes two
steps during a system scaling activity. First, scale-out/in hard-
ware resources using the classic threshold-based hardware-
only scaling strategy (e.g. EC2-AutoScaling). Second, once the
hardware scaling is done, ConScale adjusts the soft resources
of each dependent server based on the recommendations of
the SCT model. By taking both hardware resources and the
updated optimal soft resource allocations into consideration,
our ConScale framework can stabilize the system response
time during the system scaling process, especially during the
temporary overloading phases.

In brief, we summarize our contributions as follows:
• Develop the online SCT model which can quickly deter-

mine the optimal soft resource allocation of each server
in an n-tier application.

• Conduct an empirical study revealing several factors that
would affect the optimal concurrency setting of different
types of servers (e.g., Tomcat vs. MySQL).

• Implement the ConScale framework to realize fast and
intelligent soft resources adaption to match the hardware
resource variations in system scaling scenarios in clouds.

The rest of the paper is organized as follows. Section II
shows our motivation experimental results that the optimal
concurrency for a specific server is determined by various
system factors (e.g., the system state, workload characteristic,

Web Server

Application
Server

Load Balancer

Database Server

Operating System

Hypervisor

JDK Version

Apache 2.2.31
+tomcat-connecters-1.2.28

Tomcat 7.0.65
+mysql-connector-java-5.1.19

HAProxy 2.0

MySQL 5.1.62

RHEL 6.10 (kernel 2.6.32)

VMware ESXi v6.0

Oracle JDK 1.8.0

Software Stack
Model

CPU

Dell Power Edge R430

2*Intel Xeon E5-2603 v3
1.6 GHz Hexa-Core

Memory 16GB

Storage 7200rpm SATA local disk

ESXi Host Configuration

VM Configuration
vCPU
CPU limit
CPU shares
vRAM
vDisk

1
1.6GHz
Normal

2GB
20GB

(a) Software Stack and Hardware Specification.

HTTP
Requests

Clients Web Tier

Apache

DB Tier

MySQL

App Tier

Tomcat

(b) 1/1/1 Sample Topology
Fig. 2: Detailed experimental setup.

and scaling strategy). Section III illustrates the online Scatter-
Concurrency-Throughput model. Section IV introduces the
design of our ConScale framework and implementation details.
Section V displays the experimental evaluation under six
categorized realistic workload. Section VI summarizes the
related work, and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Experiment Setup

We adopt a standard n-tier benchmark RUBBoS [14], which
is modeled after a bulletin board applications like Slashdot [8].
We deploy the RUBBoS benchmark as a three-tier system
(web server tier, application server tier, and database server
tier), more tiers can be configured on-demand (load balancer
tier like HAProxy [15] or cache tier like Memcached [16]).
There are 24 servlets providing different interactions such as
“ViewStory”, which can be categorized into two workload
modes: browse-only CPU-intensive and read/write-mix I/O-
intensive workload. The workload generator generates a re-
quest rate that follows a Poisson distribution to simulate a
number of concurrent users.

We ran our experiments in private VMware ESXi [17]
testbed. Figure 2 shows software stack, hardware specifica-
tion, and sample topology of our experiments. A three-digit
notation #Web/#App/#DB is used to denote the number
of web servers, app servers, and DB servers deployed in
the experiments. For example, Figure 2(b) shows a 1/1/1
sample topology, which includes one Apache, one Tomcat,
and one MySQL. Each server in the system is deployed in
a VM which is hosted in a dedicated physical node. For
each hardware sample topology, we evaluate three represen-
tative soft resources–the thread pool in a web server, the
thread pool and the DB connection pool 2 in an app server.
These three soft resources restrict the maximum number
of concurrent processing requests in Apache, Tomcat, and

2The size of DB connection pool in an app server will yield the maximum
concurrent requests flowing to the downstream DB tier.

 400

 600

 800

 1000

 1200

 1400

5 10 15 20 30 40 60 80 100
 0

 30

 60

 90

 120

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

/s
]

R
es

p
o
n

se
 T

im
e[

m
s]

Concurrency [#]

Throughput Response Time

(a) Tomcat (1-core) achieves the highest
throughput when workload concurrency is 10.

 800

 1200

 1600

 2000

 2400

 2800

5 10 15 20 30 40 60 80 100
 0

 30

 60

 90

 120

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

/s
]

R
es

p
o

n
se

 T
im

e[
m

s]

Concurrency [#]

Throughput Response Time

(b) Tomcat (2-core) achieves the highest
throughput when concurrency is 20.

 400

 600

 800

 1000

 1200

5 10 15 20 30 40 60 80 100
 0

 30

 60

 90

 120

T
h

ro
u

g
h

p
u

t
[r

eq
u

es
ts

/s
]

R
es

p
o

n
se

 T
im

e[
m

s]

Concurrency [#]

Throughput Response Time

(c) Tomcat (2-core) achieves the highest
throughput when concurrency is 15 after we
double the dataset size in database.

Fig. 3: Performance variation at increasing workload concurrency for Tomcat in a 3-tier system. Figure 3(a) and 3(b)
show that changing the # of CPU cores could change the optimal concurrency setting in Tomcat. Figure 3(b) and 3(c) shows
the system state variation (e.g., dataset size change in MySQL) could also affect the optimal concurrency setting in Tomcat.

MySQL, respectively. We denote such three soft resources as
#Wthreads-#Athreads-#DBconnections. Both hardware re-
source utilization and application-level metrics (e.g., through-
put) measurements are taken during the runtime period at a
fine granularity (e.g., 50ms).

B. Quantitative Analysis for Optimal Concurrency Setting
with Pre-profiling Condition Variation

In this section, we show a quantitative analysis of optimal
concurrency settings for typical servers in a 3-tier system with
various pre-profiling conditions. Previous research [10], [12]
demonstrates that the request processing concurrency would
affect the efficiency of servers, which significantly impacts the
server performance. Consequently, inappropriate concurrency
settings for the specific server would incur performance degra-
dation such as large response time fluctuations and significant
throughput drop. To generate the optimal concurrency setting
for component servers, offline profiling on various concur-
rency workloads through a queueing network model is widely
adopted by academic research [10] and industry practitioners.
However, our experimental results in the following sections
show that many factors (e.g., the system state, workload
characteristic, and scaling strategy) would cause the pre-
profiling condition varies significantly, leading to sub-optimal
performance after the system scaling.

We conduct extensive experiments to explore the impact of
various pre-profiling conditions on the optimal concurrency
settings of component servers in web applications, as shown
in Figure 3. In this set of experiments, we use a modified
RUBBoS workload generator to send the browse-only requests
with zero think time between consecutive requests, thus we
can precisely control the request processing concurrency by
specifying the number of threads to stress the target server
(e.g., Tomcat or MySQL). For each controlled concurrency
level, we configure the same concurrency setting for the
corresponding server to avoid queue overflow. Concretely, we
adjust the thread pool size and database connection pool size
in Tomcat to control the concurrency level in Tomcat and
MySQL, respectively.

We show two types of pre-profiling condition variations
which are common in the production environment. First,

we examine the optimal concurrency variation when scaling
strategy changes from scale-out to scale-up (add or remove #
of CPU cores). Figure 3(a) and 3(b) show that Tomcat with
1-core achieves the optimal performance when concurrency is
10, however optimal concurrency setting for Tomcat in a 2-
core scenario changes to 20. Such experimental results indicate
that vertical scaling would cause the original concurrency
optimal setting to be sub-optimal.

The second pre-profiling condition is the change of system
state. We use different dataset size to describe such variation.
In the production environment, as the dataset size varies along
with continuous dataset updating, it would affect the sensitivity
of the application server (e.g., Tomcat) to concurrency level.
Comparing Figure 3(b) with 3(c), even for server with the
same critical computing resources(e.g., # of CPU cores) expe-
riencing the same type of workload, the optimal concurrency
changes from 20 to 15 after we manually enlarging the dataset
size. Consequently, the optimal concurrency range for MySQL
would also change when the types of workload vary.

Our previous results demonstrate that the changes of pre-
profiling conditions have a significant impact on the soft
resource allocation of component servers in web applica-
tions; only scaling hardware resources using the soft resource
allocation based on the static pre-profiling results without
considering the changes of pre-profiling conditions could
lead to inferior performance. Considering the naturally bursty
workload and unpredictable system state of web applications,
fast runtime adapting soft resources is required on the web
application scaling management.

III. SCATTER-CONCURRENCY-THROUGHPUT MODEL

In this section, we propose an online Scatter-Concurrency-
Throughput (SCT) Model which fast determines an optimal
soft resource allocation for the component server of an n-tier
application. Our model extends the classic statistical interven-
tion analysis for the bottleneck detection [18] with a signifi-
cant change: we take the non-trivial multithreading overhead
of each component server in the system into consideration,
which is non-negligible when facing high request processing
concurrency. The goal of our model is to stabilize response
time fluctuations and achieve high throughput by estimating

the optimal concurrency setting for component servers on the
fly.

A. Model Description

Based on the classic Utilization Law [13], a server’s
throughput increases as the workload concurrency increases
until the server reaches saturation. By then further increasing
the workload concurrency only leads to throughput plateau
or even throughput decrease due to non-trivial multithreading
overhead as shown by plenty of previous research studies [10],
[19]–[21]. To better illustrate our SCT model, Figure 4 char-
acterizes the relationship between a server’s throughput and
its concurrency using the following three server stages.

Ascending Stage. When the server concurrency is relatively
low, the throughput increases almost linearly as the con-
currency increases until it reaches the maximum throughput
TPmax. Theoretically, a server reaches the maximum through-
put when its bottleneck resource is 100% utilized; the value of
the maximum throughput is determined by the average demand
for the bottleneck resource per job. We define the minimum
concurrency of a server achieving the maximum throughput
as the lower bound of a rational soft resource allocation
for the server, which we denote as Qlower.

Stable Stage. In this stage, the server maintains the max-
imum throughput (i.e., TPmax) when the workload concur-
rency continues to increase beyond Qlower. We define the
maximum concurrency that the server maintains its maximum
throughput as the upper bound of a rational soft resource
allocation for the server, which we denote as Qupper.

Descending Stage. When the server concurrency exceeds
the Qupper, the server throughput enters the descending stage.
This is because component servers like MySQL of an n-
tier system widely adopt a thread-based synchronous RPC-
style mechanism for inter-tier communications. It means that
processing one client request requires one dedicated thread in
each server in the system [12]. Previous research studies [10],
[19]–[21] show that thread-based servers under high workload
concurrency suffer from non-trivial multithreading overhead
caused by various factors such as increased lock contention
among contending threads, crosstalk penalty due to cache
coherence requirement [21], and Java garbage collection due
to increased memory usage and activities [12]. Such multi-
threading overhead incurs non-linear throughput degradation
when the server concurrency increases to a high level.

Our Scatter-Concurrency-Throughput (SCT) model esti-
mates the rational concurrency range (i.e., [Qlower, Qupper])
based on a statistical analysis of each server’s real-time
throughput, response time, and concurrency. Figure 4 shows
an overview of the SCT model and illustrates the workflow
of online optimal concurrency setting estimation. There are
two major phases in SCT: the Real-time Metrics Collection
phase and the rational concurrency range Estimation phase. In
the Real-time Metrics Collection phase, we collect a series
of tuples {Qtn, TPtn, RTtn} during a short time window
(e.g., 3 minutes). Each tuple consists of a server’s real-time
concurrency, throughput, and response time. Since a server’s

𝑄 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑓𝑟𝑜𝑚 𝑄 𝑡𝑜 𝑄
𝑊ℎ𝑒𝑛 Δ𝑇𝑃 → 0, 𝑤𝑒 𝑠𝑒𝑡 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑄 𝑎𝑠 𝑄
𝑊ℎ𝑒𝑛 𝑅𝑇 > 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑤𝑒 𝑠𝑒𝑡 𝑄 𝑎𝑠 𝑄

𝑡1: 𝑄 , 𝑇𝑃 , 𝑅𝑇

…

Real-time Metrics
Collection Phase Estimation Phase

𝑡2: 𝑄 , 𝑇𝑃 , 𝑅𝑇

𝑡𝑛: 𝑄 , 𝑇𝑃 , 𝑅𝑇

𝑄: 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦
𝑇𝑃: 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑅𝑇: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

𝑡: 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠

Ascending
Stage Stable Stage

Descending
Stage

Concurrency

Throughput

Response Time

𝑄 𝑄𝑄 𝑄

Fig. 4: Overview of SCT Model and its workflow for
rational concurrency range estimation.

real-time concurrency under real-world workload varies sig-
nificantly, we denote the server concurrency variation during
each time window as [Qmin, Qmax]. For each specific server
concurrency Qn(Qn ∈ [Qmin, Qmax]), we calculate the aver-
age throughput TPn and average response time RTn. Finally,
it would provide a series of data tuple

{
Qn, TPn, RTn

}
for

the estimation phase. In the estimation phase, we apply statistic
intervention analysis [18] to process sufficient data tuples, and
we can successfully estimate the rational concurrency range
[Qlower, Qupper] of a server as shown in Figure 4. We note
that during this rational concurrency range (i.e., Stable Stage),
the server is able to maintain its highest throughput. However,
considering strict SLA requirements (e.g., bounded response
time) for web applications, we choose the lower bound Qlower

as the optimal concurrency setting for each component server
since lower concurrency means lower response time (see the
dash line in Figure 4).

B. Fine-grained Throughput and Concurrency Analysis

To correctly characterize the performance of a server in an
n-tier web application under various concurrency workloads,
one of the key points is the continuous fine-grained measure-
ment of a server’s throughput and concurrency in a certain time
interval. Concretely, we calculate the throughput by counting
how many requests are completed in the server within a
fixed time interval (e.g., 50ms); the response time and the
concurrency of a server are calculated by the average response
time of completed requests and the number of concurrent
processing requests within the same time interval, respectively.
It is important to choose an appropriate time interval to
measure the throughput and concurrency of a server in the
system in the runtime. Too long or too short of the time
interval would bring side-effects on estimating the optimal
concurrency range. We set the time interval to be 50ms,
which is a reasonable setting in our experiments. Figure 5(a),
5(b), and 5(c) show the MySQL concurrency, throughput, and
response time measured at the same 50ms time interval over a
20-second runtime after the system scales from 1/1/1 to 1/2/1
due to increased workload (i.e., period 85s∼105s in Figure 1).
We note that MySQL is the single bottleneck in the system
after the system scaling. Our experimental results show that the

 0

 20

 40

 60

 80

 100

 85 90 95 100 105

1

2

3

C
o

n
cu

rr
en

cy
 [

#
]

Timeline [s]

(a) MySQL workload concurrency.

 0

 1500

 3000

 4500

 6000

 85 90 95 100 105

1

2

3

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Timeline [s]

(b) MySQL throughput.

 0

 40

 80

 120

 160

 85 90 95 100 105

1
2

3

R
es

p
o
n

se
 T

im
e

[m
s]

Timeline [s]

(c) MySQL response time.
Fig. 5: Fine-grained monitoring of MySQL when the 3-tier system serves a realistic bursty workload. Figure 5(a), 5(b),
and 5(c) show MySQL’s “real-time” (measured at 50ms time granularity) concurrency, throughput, and response time within
the same 20-second experiment period, respectively. Three points are chosen to illustrate their position in the scatter graphs
(the correlation analysis between metrics) in Figure 6.

MySQL concurrency, throughput, and response time fluctuate
significantly after a new Tomcat is added into the system due to
the hardware-only scaling, which indicates less CPU efficiency
in MySQL.

We further correlate the MySQL’s fine-grained concurrency,
throughput, and response time for quantitative analysis of the
impact of the request processing concurrency on the server
performance (e.g., throughput and response time) as shown
in Figure 6 3. Figure 6(a) shows the correlation between the
MySQL concurrency and throughput, which is derived from
Figure 5(a) and 5(b). Each point in this figure represents the
MySQL concurrency and throughput measured at the same
50ms time interval during a 20-second runtime. We also
correlate the MySQL concurrency and response time measured
at the same 50ms time interval as shown in Figure 6(b). The
phenomenon that the MySQL throughput in Figure 6(a) has
distict three states as the concurrency increasing validates our
previous analysis in Section III-A.

Through our fine-grained analysis on the performance of a
server in the system under a realistic workload, we note that
too small (e.g., < Qlower) or too large (e.g., > Qupper) of the
request processing concurrency will lead to large performance
fluctuations of a server in the system, which is due to less
server CPU efficiency. Consequently, to achieve both good
performance and high resource efficiency during the system
scaling phase, we should consider a proper adaption of soft
resources in the system, which controls the server request
processing concurrency.

C. Factors that Affect Optimal Concurrency Setting

In this section, we further present an empirical study on
three runtime environment changes that affect the optimal
concurrency setting of different servers in web application:
different hardware scaling strategies, the change of system
state, and the change of workload characteristics. Auto-Scaling
solutions with static concurrency settings are incapable of
handling these changes due to rapid variations of the optimal
concurrency setting during the runtime. However, we will
demonstrate how our proposed SCT model deals with these
three changes during the system scaling phase.

3To display the smoothed curve, we use the smooth function in Gnu-
plot [22] for data smoothing with the cubic-splines or the Bezier curves.

 0

 2000

 4000

 6000

 8000

 0 10 20 30 40 50 60 70 80

Ascending
 State Stable State

Descending
 State

Rational Concurrency Range

Optimal Concurrency
Setting

1

2

3

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Concurrency [#]

(a) The scatter graph shows the correlation between “real-
time” server throughput and concurrency.

 0

 40

 80

 120

 160

 0 10 20 30 40 50 60 70 80

Latency Threshold is 50ms

1 2

3

R
es

p
o
n

se
 T

im
e

[m
s]

Concurrency [#]

(b) The scatter graph shows the correlation between “real-
time” server response time and concurrency.

Fig. 6: The correlations between MySQL concurrency,
throughput, and response time measured at 50ms granu-
larity during a 12-minute experiment. The blue line is the
trend line for each scatter graph. These two scatter graphs
help determine a rational range of concurrency setting for
MySQL. We choose the lower bound of the rational range
as the optimal concurrency setting (see Figure 6(a)) since it
achieves the highest server throughput and the minimum
response time within the range.

1) Scaling Strategy: Horizontal vs Vertical. The vertical
scaling, i.e., adding or removing resources (e.g., CPU and
memory) would affect the optimal concurrency setting of a
component server in n-tier applications. We start our exper-
iments with 1/4/1 hardware topology and browse-only CPU-
intensive workload. MySQL is the single bottleneck server in
the system. We initially configure MySQL with 1-core CPU
and collect concurrency and throughput metrics in a 50ms
granularity, then we scale up MySQL CPU to 2-core. Fig-

 0

 1500

 3000

 4500

 6000

 0 10 20 30 40 50 60 70 80

Qlower=10

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Concurrency [#]

(a) The 1-core MySQL server case.

 0

 800

 1600

 2400

 3200

 0 10 20 30 40 50 60 70 80

Qlower=20

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]

Concurrency [#]

(b) The Tomcat server case with the original
RUBBoS dataset.

 0

 2000

 4000

 6000

 8000

 0 5 10 15 20 25 30 35 40

Qlower=15

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Concurrency [#]

(c) The MySQL server case under CPU-
intensive workload.

 0

 3000

 6000

 9000

 12000

 0 10 20 30 40 50 60 70 80

Qlower=20

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Concurrency [#]

(d) The 2-core MySQL server case.

 0

 600

 1200

 1800

 2400

 0 10 20 30 40 50 60 70 80

Qlower=15

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]
Concurrency [#]

(e) The Tomcat server case with the enlarged
RUBBoS dataset case.

 0

 2000

 4000

 6000

 8000

 0 5 10 15 20 25 30 35 40

Qlower=5

T
h

ro
u

g
h

p
u

t
[q

u
er

ie
s/

s]

Concurrency [#]

(f) The MySQL server case under read-write-
mix I/O intensive workload.

Fig. 7: The comparison between server throughput-concurrency scatter graphs after vertical scaling, RUBBoS dataset
size change, and workload characteristics change. Figure 7(a) and 7(d) show the impact of vertical scaling (e.g., 1-core to
2-core). Figure 7(b) and 7(e) show the impact of system state change (e.g., dataset size). Figure 7(c) and 7(f) show the impact
of workload characteristics change. These case studies show that the scatter graph is able to precisely capture the shift of the
optimal server concurrency setting once the system environment changes.

ure 7(a) and 7(d) show the concurrency-throughput correlation
comparison of MySQL after the MySQL server scales up from
1-core to 2-core. For example, with the help of the SCT model,
we observe that the lower bound of the rational concurrency
setting Qlower doubles from 10 to 20 after the MySQL scaling
up, indicating the optimal concurrency setting variation of
the MySQL server due to vertical scaling. An interesting
phenomenon is that horizontal scaling would not cause such
variation (details are omitted due to space constraints).

2) System State: Original RUBBoS Dataset vs Manually
Enlarged Dataset. The system state variation affects the
optimal concurrency setting of a component server in an
n-tier application by affecting the degrees of computation
for the business logic for the same type of client requests.
For example, in the production environment, the permanent
datasets of web applications vary all the time due to continuous
dataset updates, which leads to variations of the service time
of client requests accordingly. In this set of experiments,
we start our experiments with 1/1/4 hardware topology and
browse-only workload. Tomcat is the single bottleneck server
in the system. We initially employ the original RUBBoS
dataset, and then we manually enlarged the original RUBBoS
dataset. Figure 7(b) and 7(e) show the concurrency-throughput
correlation comparison of Tomcat after we enlarge the dataset
size in MySQL. Concretely, our experimental results show that
the lower bound of the optimal soft resource Qlower decreases
from 20 to 15 after the change of dataset size, which helps
explain the extensive experimental results in Section II-B.

3) Workload Type: CPU-intensive vs I/O intensive. Further-
more, we explore the impact of different workload types on

the optimal soft resource allocation of a component server
in n-tier applications. We switch the workload from read-only
CPU-intensive mode to read/write-mix I/O-intensive mode. We
start our experiments with 1/4/1 hardware topology. MySQL
is the single bottleneck in the system, and the critical hardware
resources change from CPU to disk I/O due to the change of
the browse-only workload to the read/write-mix I/O-intensive
workload, leading to significant variations of the capacity
of the server. Figure 7(c) and 7(f) show the concurrency-
throughput correlation comparison of MySQL between the
CPU-intensive workload and the I/O-intensive workload. We
observe that the lower bound of the optimal soft resource
Qlower decreases from 15 to 5 after we change the read-only
“ViewStory” workload to the read/write-mix I/O-intensive
“StoreStory” workload.

Previous experimental results demonstrate that our proposed
SCT model is capable of capturing the optimal concurrency
setting variation of a component server when the system
encounters the runtime environment changes (e.g., the hard-
ware scaling strategies, the system state, and the workload
characteristics).

IV. CONCURRENCY-AWARE SYSTEM SCALING DESIGN
AND IMPLEMENTATION

So far we have discussed our SCT model to fast estimate
the optimal concurrency settings of a component server in an
n-tier application during runtime. Our previous experimental
results show that the hardware-only scaling solutions are not
able to handle the optimal concurrency setting variations due to
the runtime environment changes during system scaling phase
(see Figure 1); thus an appropriate adaption of soft resources

4 Actuators

Software Agent

Hardware Agent

1

Metrics Warehouse
Concurrency
Throughput

AVG CPU Utilization

Optimal Concurrency Estimator
SCT Model <𝑐𝑏 , 𝑇𝑃 >

<𝑐𝑏 , 𝑇𝑃 >

<𝑐𝑏 , 𝑇𝑃 >

E.g., “MySQL1”, “22”

2

3

Decision Controller

< 𝐶𝑃𝑈 >

< 𝐶𝑃𝑈 >

E.g., “MySQL”

VM-scaling

Soft Resource
Reallocation

Metrics in
each VM

Historical Result
Tomcat1 30
MySQL1 20->22

… …

5 6

Asynchronous

Fig. 8: The architecture of our ConScale framework.

is important regarding the dynamic runtime environment to
achieve good performance while maintaining high resource
efficiency. In this section, we propose our Concurrency-aware
system Scaling (ConScale) framework, which integrates the
SCT model (see Section III) and can fast conduct an optimal
soft resource adaption in the bottleneck tier of the system on
the fly. Figure 8 shows that our ConScale framework consists
of four components: Metric Warehouse, Online Optimal Con-
currency Estimator, Decision Controller, and Actuators.

Metric Warehouse collects both application- and system-
level metrics (e.g., throughput and CPU) through the monitor-
ing agents installed in each VM at every one second (step 1
in Figure 8) and provides the data to Decision Controller and
Optimal Concurrency Estimator. Decision Controller decides
when and how to turn on/off VMs based on the system need
and retrieves the optimal concurrency setting from Optimal
Concurrency Estimator. Actuators arrange VM-scaling and
soft resource reallocation according to the demand of the Deci-
sion Controller. Optimal Concurrency Estimator has another
workflow, it continuously pulls fine-grained application-level
metrics (e.g., concurrency and throughput) from the metric
warehouse asynchronously, and feeds the data to the SCT
model as we introduced in Section III to generate an optimal
concurrency setting of a server in the system.

A. Implementations

VM-scaling. Since the underlying hypervisor in clouds al-
ready provides sufficient APIs to manipulate VMs, we can eas-
ily launch and turn off VMs via calling these APIs remotely.
However, there are two main challenges for VM scaling. First,
it is a non-trivial task to add new VMs running stateful servers
(e.g., DB server) due to the complicated data/state consistency
problem [23]. To solve this problem, we simply replicate the
MySQL dataset in the scaling phase. Due to the small dataset
size of RUBBoS, we set a 15-second preparation period before
launching each new VM, which is considered as a reasonable
configuration in our experiments. Longer preparation period
could be required due to more complex data/state consistency
in a real production environment.

Second, we need to consider the load balancing problem
among the original servers in the system with the newly
added servers after scaling. In our experiments, we use

U
s
e
rs

 [
#
]

(a) Large variations

U
s
e
rs

 [
#
]

(b) Quickly varying

U
s
e
rs

 [
#
]

(c) Slowly varying

U
s
e
rs

 [
#
]

(d) Big spike

U
s
e
rs

 [
#
]

(e) Dual phase

U
s
e
rs

 [
#
]

(f) Steep tri phase

Fig. 9: Realistic workload traces used in our experiments.

HAProxy [15], which provides both HTTP and TCP-based
proxying, as a load balancer for both the application tier and
the DB tier. Concretely, a new incoming request from either
the web tier or the application tier will be dispatched by
HAProxy to the downstream tier based on a pre-configured
load balancing policy (e.g., roundrobin or leastconn).
In our implementation, we adopt leastconn policy.

Soft resource adaption. After hardware scaling, the De-
cision Controller automatically adapts soft resources in the
system to yield the request processing concurrency of each
related server. In the current implementation, we dynamically
adjust the thread pool size to limit the request processing
concurrency of the Tomcat server; and we control the DB
connection pool size in the Tomcat server to restrict the
maximum request processing concurrency of MySQL.

Concretely, the runtime adaption of the thread pool size
in Tomcat is implemented in the latest Tomcat [24] through
Java Management Extensions (JMX) [25] technology. In this
case, our software agent is able to fetch or modify the thread
pool size via RMI (Remote Method Invocation). However, the
Tomcat server JMX service does not provide the ability to
change the size of the database connection pool in the runtime.
Therefore, we extend the JMX service in Tomcat to expose the
interfaces of the DB connection pool size management.

V. EXPERIMENT EVALUATION

We evaluate the effectiveness of our ConScale in stabilizing
performance fluctuations under six realistic bursty workloads
compared to two state-of-the-art scaling mechanisms: Amazon
AWS service EC2-AutoScaling [9] and the concurrency-aware
DCM [10] framework. We will show that ConScale outper-
forms the other two scaling mechanisms in achieving high
throughput and stabilizing the system response time because of
fast soft resources adaption during the temporary overloading.

Experimental Setup. We implement and deploy three
scaling frameworks (i.e., EC2-AutoScaling, DCM, and Con-
Scale) in our private VMware ESXi cluster. The hardware-
only scaling framework EC2-AutoScaling is widely-adopted
in academic research and industry practices, which maintain
customers’ applications by automatically adding or removing
VMs according to the pre-defined conditions (e.g., the server
CPU utilization > 80%). The concurrency-aware DCM frame-
work integrates the concurrency-aware model to intelligently
reallocate soft resources in the system during the system
scaling process. To avoid performance instability problem, we

 0

 600

 1200

 1800

 2400

 0 100 200 300 400 500 600 700

 0

 1000

 2000

 3000

 4000

 5000

R
es

p
o
n

se
 T

im
e

[m
s]

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]

Timeline [s]

EC2 Auto−Scaling

Throughput
Response Time

(a) The system response time encounters large fluctuations un-
der the “Large Variation” workload and the system throughput
drops during the response time spikes at 62s, 244s and 545s.

 0

 600

 1200

 1800

 2400

 0 100 200 300 400 500 600 700

 0

 1000

 2000

 3000

 4000

 5000

R
es

p
o
n

se
 T

im
e

[m
s]

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]

Timeline [s]

ConScale Auto−Scaling

Response Time
Throughput

(b) The system response time is stable and low under the
same workload in (a) and the system throughput matches the
workload variations as shown in Figure 9(a).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

 0

 2

 4

 6

 8

 10

CPU Utilization Threshold

A
V

G
 C

P
U

 U
ti

l.
 [

%
]

T
o
ta

l
n

u
m

b
e
r

o
f

V
M

s
[#

]

Timeline [s]

Tomcat Tier MySQL Tier # of VMs

(c) The Tomcat/MySQL tier scales out/in along with the CPU
utilization. Tomcat scales out at timeline 85s and 595s while
MySQL scales out at timeline 90s, 273s, and 552s.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

 0

 2

 4

 6

 8

 10

CPU Utilization Threshold

A
V

G
 C

P
U

 U
ti

l.
 [

%
]

T
o
ta

l
n

u
m

b
e
r

o
f

V
M

s
[#

]

Timeline [s]

Tomcat Tier MySQL Tier # of VMs

(d) The Tomcat/MySQL tier scales out/in along with the CPU
utilization. Tomcat scales out at timeline 65s and 96s, while
MySQL scales out at timeline 85s, 261s, and 622s.

Fig. 10: Large performance fluctuations of EC2-AutoScaling compared to ConScale using the same “Large Variation”
workload trace. The left-side figures show the performance of EC2-AutoScaling while the right-side figures show the
performance of ConScale. Both systems start with the same system topology 1/1/1 and the soft resource allocation 1000-
60-40. However, ConScale outperforms EC2-AutoScaling once the system scales.

TABLE I: Tail response time (i.e., 95th and 99th percentile
response time) comparison between EC2-AutoScaling and
ConScale under six realistic bursty workload traces.

Percentile Response Time [ms]
Large

Variation
Quick

Varying
Slowly

Varying
Big

Spike
Dual
Phase

Steep Tri
Phase

𝑅𝑇 EC2-AutoScaling 462 157 1135 687 225 101
ConScale 157 48 85 179 81 56

𝑅𝑇 EC2-AutoScaling 2345 684 3252 3981 1153 1259
ConScale 465 229 218 479 328 171

adopt the “quick start but slow turn off” hardware scaling
strategy to avoid performance instability problem [6]. We
conduct our evaluation experiments of three frameworks under
six realistic bursty workload traces, as shown in Figure 9.
The workload traces are collected from real-world traces and
further categorized by Gandhi [6]. We ran our experiments
with the 7500 maximum concurrent users for 12 minutes.

Performance Comparison between ConScale and EC2-
AutoScaling. Figure 10 shows the performance comparison
between ConScale and EC2-AutoScaling frameworks under
the same “Large Variation” workload (See Figure 9). The
left two figures (Figure 10(a) and 10(c)) show the EC2-
AutoScaling case, and the right two figures (Figure 10(b)
and 10(d)) show our ConScale case. In this set of experiments,
we start our evaluation with 1/1/1 hardware topology and soft
resource allocation is 1000-60-40.

The system with both ConScale and EC2-AutoScaling
scales when the CPU usage of either the Tomcat tier or
the MySQL tier exceeds a pre-defined threshold (i.e., 80%).

Comparing Figure 10(a) and 10(b), our ConScale has rela-
tively stable response time and throughput in a 12-minute
experiment runtime than that in the EC2-AutoScaling case.
For example, EC2-AutoScaling encounters large response time
fluctuations and significant throughput drop at the scaling out
phase (periods 62s∼95s, 244s∼285s, and 545s∼570s). Taking
the first period 62s∼95s in Figure 10(a) for example, EC2-
AutoScaling shows a significant throughput degradation and a
large response time spike. We observe that a new Tomcat is
added into the system at 85s because the CPU utilization of
the Tomcat tier exceeds a pre-defined threshold (Figure 10(c)).
Once the second Tomcat starts to serve incoming requests,
MySQL becomes the new bottleneck tier and the Tomcat tier
now is able to send double concurrent requests to the down-
stream MySQL. High concurrent requests in MySQL cause
low efficiency of MySQL CPU (see Figure 6). On the other
hand, there is moderate performance degradation during the
system scaling process in our ConScale case in Figure 10(b).
This is because our ConScale framework estimates the optimal
concurrency setting of both Tomcat and MySQL based on
the SCT model during the temporary overloading, and such
resource allocation could guarantee the server can fully and
efficiently utilize the hardware resources and achieves much
more stable performance compared to the EC2-AutoScaling
case.

We further compare tail response time (i.e., 95th and 99th
percentile) between EC2-AutoScaling and ConScale frame-
works under other types of workload traces (see Figure 9)
in Table I. Our results show that even for the 99th percentile

 0

 600

 1200

 1800

 2400

 0 100 200 300 400 500 600 700

 0

 1000

 2000

 3000

 4000

 5000

R
es

p
o
n

se
 T

im
e

[m
s]

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]

Timeline [s]

DCM Auto−Scaling

Throughput
Response Time

(a) The system response time encounters large fluctuations
under the “Large Variation” workload at timeline 56s and 556s.

 0

 600

 1200

 1800

 2400

 0 100 200 300 400 500 600 700

 0

 1000

 2000

 3000

 4000

 5000

R
es

p
o

n
se

 T
im

e
[m

s]

T
h

ro
u

g
h

p
u

t
[r

eq
s/

s]

Timeline [s]

ConScale Auto−Scaling

Throughput
Response Time

(b) The system response time is stable and low under the same
workload in (a).

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

 0

 2

 4

 6

 8

 10

CPU Utilization Threshold

A
V

G
 C

P
U

 U
ti

l.
 [

%
]

T
o
ta

l
n

u
m

b
e
r

o
f

V
M

s
[#

]

Timeline [s]

Tomcat Tier MySQL Tier # of VMs

(c) The Tomcat/MySQL tier scales out/in along with the CPU
utilization. Tomcat scales out at timeline 85s and 590s while
MySQL scales out at timeline 85s, 272s, 565s.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700

 0

 2

 4

 6

 8

 10

CPU Utilization Threshold

A
V

G
 C

P
U

 U
ti

l.
 [

%
]

T
o

ta
l

n
u

m
b

e
r

o
f

V
M

s
[#

]

Timeline [s]

Tomcat Tier MySQL Tier # of VMs

(d) The Tomcat/MySQL tier scales out/in along with the CPU
utilization. Tomcat scales out at timeline 75s and 590s while
MySQL scales out at timeline 98s, 273s, and 566s.

Fig. 11: Our proposed ConScale framework achieves much more stable and low response time and higher throughput
than that in the DCM case when the system state changes (i.e., the dataset size). We reduce the dataset size in database
to simulate system state change in the production environment.

response time, ConScale can still limit the response time below
500ms for all the cases, which is required for most web
applications [26]

Performance Comparison between ConScale and DCM.
Here we compare the performance between ConScale and
DCM to demonstrate the adaptiveness and reliability of our
online Scatter Concurrency-Throughput (SCT) model com-
pared to the offline queuing network model with Concurrency-
Aware model which requires a training process for specific
workload [10]. One intuitive drawback for the offline models
is that they require additional offline training for the optimal
soft resource allocation when the runtime environment (e.g.,
scaling strategy, system state, and workload type) changes as
we discussed in Section III-C.

We start our experiment using the “Large Variation” work-
load with browse-only CPU-intensive mode. At first, we use
the original RUBBoS dataset to train DCM for the optimal
concurrency setting, which gives us 20 for Tomcat thread pool
size and 40 for MySQL DB pool size. We then compare the
performance of two frameworks (DCM and ConScale) using
the same workload with a manually reduced dataset to simulate
the system state change due to continuous dataset updates in
a real-world production system. According to the analysis in
Section III-C, the optimal concurrency setting should vary.
Based on our model, ConScale estimates that the new optimal
concurrency setting for Tomcat should be 30. Figure 11 shows
that our proposed ConScale framework achieves much more
stable low response time and higher throughput than that in
DCM case during the temporary overloading since it adjusts
concurrency setting for Tomcat. Taking the first response time
spike (85s∼90s) in Figure 11(a) for example, it is because

that DCM is unaware of the change of the system state, the
original “optimal” setting becomes too low and causes the
server cannot fully utilize the hardware resources (e.g., CPU)
(the under-allocation effect [12]). Furthermore, it leads to the
low efficiency of the Tomcat CPU and sub-optimal system
performance. Consequently, such a phenomenon validates the
accuracy of the estimation of our online SCT model.

VI. RELATED WORK

Threshold-based Auto-Scaling Technique is widely used
among industry cloud providers for computing resource man-
agement. One of the key points of threshold-based auto-scaling
is how to decide the threshold to achieve good performance.
For example, Dutreilh et al. [27] avoid scaling actions oscil-
lations in the system by controlling the cool-down period and
the inertia interval. Hasan et al. [28] correlate multiple metrics
(e.g., CPU, storage, and network) to construct a more detailed
threshold. Similarly, our work utilizes hybrid metrics consists
of CPU Utilization, server concurrency and, throughput to
guarantee the robustness of threshold.

Auto-Scaling Technique with Adaptive Resource Allo-
cation. Previous work [29], [30] shows that the complex
dependencies among different tiers are the main performance
problem of an n-tier system under the bursty workload. Many
research efforts advocate that the adaptive resource allocation
strategy is an effective solution to improve the scalability
in clouds. Nathuji et al. [29] consider performance interfer-
ence effects due to the application consolidation in clouds
and develop a QoS-aware control framework, Q-clouds, to
transparently adjust resource allocations to guarantee the QoS
requirement. Sun et al. [30] propose a model-based framework,

ROAR, to optimize and automate cloud resource allocation de-
cisions to meet the QoS goal. Our work focuses on improving
the adaptivity of the auto-scalers by fast and intelligent soft
resources adaption to match the hardware resource variation
in system scaling scenarios in clouds.

VII. CONCLUSION

We studied the importance of the online estimation of
the optimal concurrency setting for component servers in
an n-tier system. It is used to realize dynamic concurrency
reallocation to mitigate large response time fluctuations for
the system during the scaling phase in clouds. Through our
standard n-tier benchmark RUBBoS experiments under the
realistic workload, we reveal that several factors that may incur
rational concurrency variation (Section II-B and Section III-C).
We then propose a Scatter-Concurrency-Throughput (SCT)
model using fine-grained measurement data to estimate a
rational concurrency setting of a server in the system on the
fly (Section III). We further develop a Concurrency-aware
system Scaling (ConScale) framework which integrates the
aforementioned SCT model, with a goal of fast and dynam-
ically adapting soft resources of each tier during the system
scaling phase (Section IV). Our evaluation experiments under
six representative realistic workloads show that ConScale can
effectively stabilize large performance fluctuations and reduce
the long-tail latency compared to the state-of-the-art hardware-
only auto-scaling technique and dynamic concurrency recon-
figuration framework [10] (Section V).

VIII. ACKNOWLEDGMENT

This research has been funded by National Science Founda-
tion by CISE’s CNS-1566443 and CNS-2000681. Any opin-
ions, findings, and conclusions are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation or other funding agencies mentioned above.

REFERENCES

[1] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,
“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proceedings of the 1st ACM symposium on Cloud comput-
ing. ACM, 2010, pp. 241–252.

[2] B. Snyder, “Server virtualization has stalled, despite the hype,” In-
foWorld, 2010.

[3] A. Sriraman and T. F. Wenisch, “µtune: Auto-tuned threading for
{OLDI} microservices,” in 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), 2018, pp. 177–194.

[4] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” ACM SIGCOMM Computer Communication Review, 2012.

[5] R. Rojas-Cessa, Y. Kaymak, and Z. Dong, “Schemes for fast transmis-
sion of flows in data center networks,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 3, pp. 1391–1422, 2015.

[6] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Transactions on Computer Systems (TOCS), 2012.

[7] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource scal-
ing for cloud applications,” in Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012). IEEE Computer Society, 2012, pp. 644–651.

[8] S. Adler, “The slashdot effect: an analysis of three internet publications,”
Linux Gazette, vol. 38, no. 2, 1999.

[9] A. W. Services, “Amazon ec2 auto scaling,” https://aws.amazon.com/
ec2/autoscaling/, 2019.

[10] Q. Wang, H. Chen, S. Zhang, L. Hu, and B. Palanisamy, “Integrating
concurrency control in n-tier application scaling management in the
cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 30,
no. 4, pp. 855–869, 2018.

[11] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling
techniques for elastic applications in cloud environments,” Department
of Computer Architecture and Technology, University of Basque Country,
Tech. Rep. EHU-KAT-IK-09, vol. 12, p. 2012, 2012.

[12] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong, C. Pu,
M. Kawaba, and L. Harada, “The impact of soft resource allocation on
n-tier application scalability,” in 2011 IEEE International Parallel &
Distributed Processing Symposium. IEEE, 2011, pp. 1034–1045.

[13] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quan-
titative system performance: computer system analysis using queueing
network models. Prentice-Hall, Inc., 1984.

[14] O. Consortium, “Rubbos: Bulletin board benchmark,”
http://jmob.ow2.org/rubbos.html, 2005.

[15] H. Community, “Haproxy: The reliable, high performance tcp/http load
balancer,” http://www.haproxy.org/, 2019.

[16] Dormando, “Memcached,” https://memcached.org/, 2019.
[17] VMware, “Vmware esxi: The purpose-built bare metal hypervisor,”

https://www.vmware.com/products/esxi-and-esx.html, 2019.
[18] S. Malkowski, M. Hedwig, J. Parekh, C. Pu, and A. Sahai, “Bottleneck

detection using statistical intervention analysis,” in International Work-
shop on Distributed Systems: Operations and Management. Springer,
2007, pp. 122–134.

[19] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-
conditioned, scalable internet services,” in ACM SIGOPS Operating
Systems Review, vol. 35, no. 5. ACM, 2001, pp. 230–243.

[20] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra,
“Controlling quality of service in multi-tier web applications,” in
26th IEEE International Conference on Distributed Computing Systems
(ICDCS’06). IEEE, 2006, pp. 25–25.

[21] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach. Elsevier, 2011.

[22] W. Thomas and K. Colin, “gnuplot homepage,” http:
//www.gnuplot.info/, 2019.

[23] D. Abadi, “Consistency tradeoffs in modern distributed database system
design: Cap is only part of the story,” Computer, vol. 45, no. 2, pp.
37–42, 2012.

[24] A. S. Foundation, “Apache tomcat 7,” https://tomcat.apache.org/tomcat-
7.0-doc/funcspecs/mbean-names.html, 2019.

[25] Oracle, “Java management extensions (jmx) technology,”
https://www.oracle.com/technetwork/java/javase/tech/javamanagement-
140525.html, 2019.

[26] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[27] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From
data center resource allocation to control theory and back,” in 2010 IEEE
3rd international conference on cloud computing. IEEE, 2010.

[28] M. Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S. L. D. Gudreddi,
“Integrated and autonomic cloud resource scaling,” in 2012 IEEE
network operations and management symposium. IEEE, 2012, pp.
1327–1334.

[29] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing
performance interference effects for qos-aware clouds,” in Proceedings
of the 5th European conference on Computer systems. ACM, 2010,
pp. 237–250.

[30] Y. Sun, J. White, S. Eade, and D. C. Schmidt, “Roar: A qos-oriented
modeling framework for automated cloud resource allocation and op-
timization,” Journal of Systems and Software, vol. 116, pp. 146–161,
2016.

