
AutoScaling: Achieve Good Performance and High Resource Efficiency

 Effectively scaling a web application is challenging:
✥ Strict Service Level Objectives (SLO), e.g., response time < 300ms.
✥ Soft resources (e.g., server threads/connections) allocation also impact

system performance besides adding new servers.

Coordinating Fast Concurrency Adapting with AutoScaling

for SLO-Oriented Web Applications
Jianshu Liu, Louisiana State University

Real-time Online Scatter-Concurrency-
Throughput (SCT) Model

 Effectively autoscaling is difficult due to strict SLO requirements of e-commercial web applications
and complex soft resources tuning.

 Implement the ConScale framework to realize fast and intelligent soft resources adaption based on
our online SCT model to handle temporary overloading in system scaling scenarios in clouds.

 Our ConScale can help various large-scale systems effectively maintain a stable response time and
satisfy SLO requirements.

Our Solution: Integrating SCT Model to
System Scaling Design (ConScale)

 ConScale Framework Design

✥ ConScale helps EC2-AutoScaling mitigate the large response
time fluctuations. (Kubernetes-HPA and DCM also compared)

✥ ConScale can restrict the 95th and 99th response time below
500ms under six categories of workload traces.

✥ ConScale only causes a maximum 4.82% CPU overhead at
peak workload.

Conclusion

This work was accepted by IEEE Transactions on Parallel and Distributed Systems (TPDS) on February 14, 2022

 Cloud computing platforms support Automatically Scaling (AutoScaling)
a web application to match the naturally bursty workload.
✥ For example, Amazon prepares more servers to handle over 10X larger

customers over Black Friday than in regular periods.

Contact

Jianshu Liu

Department of Computer
Science and Engineering

Email: jliu96@lsu.edu

Experiment Results

VMs scaling out would
change the server concurrency

 Real-time Metrics Collection Phase
✥ Collect a server’s real-time concurrency, throughput and

response time as a tuple measured at a fine granularity (e.g.,
50ms) during a short time period (e.g., 3 minutes).

✥ Extract the main sequence curve from the scatter graph.
 Rational Concurrency Range Estimation Phase
✥ Estimate rational concurrency range [𝑄𝑙𝑜𝑤𝑒𝑟 , 𝑄𝑢𝑝𝑝𝑒𝑟] based

on statistical intervention analysis and latency threshold.

Case Study: Applying SCT Model to MySQL

✥ Our SCT model indicates the rational MySQL concurrency
range is [10, 65], which can achieve the highest throughput
and satisfy SLO requirement (i.e., RT < 50ms).

✥ We choose the lower bound of such rational range (i.e., 10)
as the optimal MySQL concurrency setting.

✥ We select the 𝑄𝑙𝑜𝑤𝑒𝑟 as the optimal concurrency setting
since we make a tradeoff to guarantee a low response time.

